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Abstract
Requirements are usually written in natural language and evolve continuously during the process of software development, 
which involves a large number of stakeholders. Stakeholders with diverse backgrounds and skills might refer to the same 
real-world entity with different linguistic expressions in the natural-language requirements, resulting in requirement incon-
sistency. We define this phenomenon as Entity Coreference (EC) in the Requirement Engineering (RE) area. It can lead to 
misconception about technical terminologies, and harm the readability and long-term maintainability of the requirements.  
In this paper, we propose a DEEP context-wise method for entity COREFerence detection, named DeepCoref. First, we 
truncate corresponding contexts surrounding entities. Then, we construct a deep context-wise neural network for coreference 
classification. The network consists of one fine-tuning BERT model for context representation, a Word2Vec-based network 
for entity representation, and a multi-layer perceptron in the end to fuse and make a trade-off between two representations. 
Finally, we cluster and normalize coreferent entities. We evaluate our method, respectively, on coreference classification and 
clustering with 1853 industry data on 21 projects. The former evaluation shows that DeepCoref outperforms three baselines 
with average precision and recall of 96.10% and 96.06%, respectively. The latter evaluation on six metrics shows that Deep-
Coref can cluster coreferent entities more accurately. We also conduct ablation experiments with three variants to demonstrate 
the performance enhancement brought by different components of neural network designed for coreference classification. 

Keywords Entity coreference · Requirements inconsistency · Deep learning · Requirement engineering

1 Introduction

In the stage of conception, requirement specifications are 
specified in natural language with the flexibility to accom-
modate the arbitrary abstraction [30]. Most requirements 
are written by different stakeholders with diverse back-
grounds and skills [9, 21, 45]. Writing requirements clearly 
without inconsistency and ambiguity before passing to the 
subsequent stages of the development is a challenging but 
essential task [20, 56]. The inconsistency violates one of 
the quality principles related to linguistic aspects of natural-
language requirements [16]. It might occur among require-
ment analysts and domain experts because of their special-
ized jargons, or stakeholders from different domains [21].

In practice, different linguistic expressions could be used 
by different stakeholders to refer to the same real-world 
entity in natural-language requirements, and we define 
such phenomena as Entity Coreference (EC). More spe-
cifically, we present an example of EC in Fig. 1 for illus-
tration. Suppose we have three pieces of natural-language 
requirement texts (R1, R2, and R3) and their related entities: 
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“industry-related term list” in R1, “finance vocabulary list” 
in R2 and “finance word list” in R3. However, we can con-
clude the three entities refer to the same thing according 
to their contexts. EC might lead to misconception on enti-
ties, thus impairing the readability and understandability of 
requirements [60]. This work focuses on resolving EC in 
Requirement Engineering (RE)1.

To tackle the problem of inconsistency or ambiguity in 
natural-language requirements, researchers have proposed 
many works literally. We classify these works into three 
categories. Pattern-based methods use some special terms 
and expressions of different Part-of-Speech (PoS) and other 
patterns [6, 18, 19, 23, 67, 72] for inconsistency detection, 
or heuristics to tackle coordination or anaphoric ambigui-
ties [7, 78]. Learning-based methods [5, 17, 56] use infor-
mation retrieval (IR) techniques such as Latent Semantic 
Indexing (LSI) or unsupervised clustering algorithms such 
as K-Means. Similarity-based methods include word embed-
dings [21] and syntactic methods (e.g., Jaccard [10] and 
Levenstein [51]) by computing a similarity score between 
entities. However, these methods cannot be directly utilized 
in EC due to the following challenges:

• Multi-word entity In natural-language requirements, 
most entities are noun phrases [1, 22] rather than a sin-
gle word. For example, all entities shown in Fig. 1 con-
sist of multiple words. On average, each entity contains 
3.52 words based on observations on our industry data. 
However, it is challenging to represent multi-word enti-
ties with word-level representation techniques. Take the 
entities in Fig. 1 as an example, the expression of entity 
E1 is quite different from the expressions of the other 
two entities E2 and E3, that they only share one identi-
cal word ”list”. However, E1 refers to the same entity as 
E2 and E3. If we simply use the word-level similarity 
methods such as word embedding, incorrect EC will be 

given that E2 and E3 are coreferent entities while E1 is a 
different one.

• Missing contextual semantics Sentence-level contextual 
semantic information can provide extra information for 
resolving EC, which is ignored by existing works. In 
most cases, we infer whether two entities are coreferent 
based on their contexts, because coreferent entities usu-
ally have similar contexts. For example in Fig. 1, similar 
contextual words such as “user” and “online help tool” 
appear in all the three requirements, which indicates 
three entities are coreferent. Therefore, add and how to 
add contextual semantics into entity representations is 
important as well.

• Insufficient annotated resources Domain expertise and 
intensive manual effort are required when annotating 
coreferent entities in requirements, resulting in insuffi-
cient annotated data for effective learning. In addition, 
EC detection in RE is a domain-specific task. It cannot 
directly benefit from large general corpora or public 
knowledge bases like general coreference detection tasks. 
How to use limited annotation data and benefit from pre-
trained models trained on large general corpora is another 
challenge.

Based on the challenges addressed above, our previous work 
[76] proposed a DEEP context-wise semantic method to 
resolving entity COREFerence in natural-language require-
ments, which is named DeepCoref. It first performs Context 
Truncation to truncate context for each entity and then con-
vert ⟨context, entity⟩ pairs to model input format. Then, it 
performs Coreference Classification to infer whether two 
entities are coreferent by constructing a context-wise coref-
erence network. The network consists of two parts. One is a 
deep fine-tuning BERT context model for context represen-
tation, and the other is a Word2Vec-based entity network for 
entity representation. Subsequently, we use a Multi-Layer 
Perceptron (MLP) to fuse two representations. The input of 
the network is requirement contextual text and related enti-
ties, and the output is a predicted label to infer whether two 
entities are coreferent.

However, DeepCoref has one major limitation that it can 
only resolve coreference between entity pairs, which seri-
ously affected its practicality in requirement analysis activi-
ties, such as establishing a non-coreferent entity dictionary. 
Establishing and maintaining such a dictionary, which char-
acterizes the key functional objects of the software system, is 
an effective mechanism to tackle issues triggered by require-
ment evolution. These issues include ambiguous or duplicate 
features, lacking of visibility in requirement dependency, 
poor scope and cost estimation of software projects [42]. 
The non-coreferent entity dictionary can also support new 
feature identification [31], requirement change analysis [34], 
and effort estimation based on requirement changes [35], etc. 

Fig. 1  Examples of coreferent entities in natural-language require-
ments, which make the requirements difficult to understand

1 Note that entities in this research are ready-made, and entity extrac-
tion is out of the scope of this research.
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To support requirement analysts addressing these issues, we 
enhance DeepCoref by integrating two new components:

• Clustering is to cluster all coreferent entities based on 
coreference relations of entity pairs, so that coreferent 
entities are assigned into the same clusters and non-coref-
erent ones into different clusters.

• Normalization is to select one from all coreferent entities, 
so that each cluster of coreferent entities can have one 
normalized name.

Clustering can link all coreferent entity pairs together, 
which help requirement analysts understand which entities 
are coreferent to the same conception. Normalization can 
assign a normalized name for coreferent entities, which help 
requirement analysts reduce misconception caused by dif-
ferent expressions.

We investigate the effectiveness of DeepCoref with 
data from our industry partner. The experimental results 
of coreference classification show that our method outper-
forms three baselines, with average precision and recall 
of 96.10% and 96.06%, respectively. The clustering per-
formance of DeepCoref are higher as well than two base-
lines on all the six clustering evaluation metrics. We also 
conduct ablation experiments for network design of Deep-
Coref with three variants to demonstrate the performance 
enhancement brought by different components in corefer-
ence classification.

The main contributions of this paper are as follows:

• We highlight the importance of detecting entity corefer-
ence in RE.

• We propose a deep context-wise coreference network 
which combines contextual semantics for automatic 
coreference classification, a method of clustering corefer-
ent entities, and a method of normalizing the expressions 
of coreferent entities.

• From the perspective of coreference classification and 
clustering, we conduct experimental evaluation on 1853 
samples of 21 projects from the industry community with 
promising results.

• Public-access of source code2 to facilitate the replication 
of our study and its application in other contexts.

The rest of the paper is organized as follows. Section 2 
describes the background. Section 3 presents the design of 
our proposed method. Sections 4 and 5 show the experi-
mental setup and evaluation results, respectively. Section 6 
provides a detailed discussion. Section 7 describes threats 

to validity. Section 8 surveys related work. Finally, we sum-
marize the paper in Sect. 9.

2  Background

In this section, we introduce some key techniques related 
to this research: fine-tuning BERT, word embeddings and 
Coreference Resolution (CR). We include them here because 
our work is based on these techniques.

2.1  Fine‑tuning BERT

BERT (Bidirectional Encoder Representations from Trans-
formers) [13] is a deep bidirectional Transformer encoder 
[74] trained with the objective of masked language modeling 
and the next-sentence prediction task, which proves effective 
in various NLP tasks. It is constructed based on Transformer 
architecture [74], which is proposed to use a stacked self-
attention encoder-decoder structure to replace conventional 
LSTM [27] architecture. It also introduces multi-headed 
attention to improve previous attention mechanisms, which 
helps the overall model to focus on different positions and 
solves the problem that the current word itself can dominate 
other words [26, 74]. Radford et al. [64] introduce the con-
cepts of the Transformer architecture that can be fine-tuned. 
They verify that large performance enhancement can be real-
ized by generative pre-training of a language model on a 
diverse corpus of unlabeled text, followed by discriminative 
fine-tuning on each specific task.

BERT framework has two steps: (1) pre-training, where 
the model is trained on unlabeled data over different pre-
training tasks. (2) fine-tuning, where the BERT model is 
first initialized with the pre-trained parameters, and all of the 
parameters are fine-tuned using labeled data from the down-
stream tasks. BERT has two model sizes: BERTBASE (L=12, 
H=768, A=12, Total Parameters=110 M) and BERTLARGE 
(L=24, H=1024, A=16, Total Parameters=340 M), where 
the number of layers (i.e., Transformer blocks) is denoted 
as L, the hidden size as H, and the number of self-attention 
heads as A.

BERT is designed to unambiguously represent both a sin-
gle sentence and a pair of sentences in one token sequence, 
for handling a variety of downstream tasks. As for output, 
the token representations are fed into an output layer for 
token-level tasks, and the [CLS] representation is fed into an 
output layer for classification. The pre-trained BERT can be 
simply plugged by the task-specific inputs and outputs and 
fine-tuned all the parameters end-to-end, which is relatively 
inexpensive compared to pre-training.

2 https://github.com/MeloFancy/DeepCoref.

https://github.com/MeloFancy/DeepCoref
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2.2  Word embeddings

Embedding (also known as distributed representation [59, 
73]) is a technique for learning vector representations of 
entities such as words, sentences and images in such a way 
that similar entities have vectors close to each other [58, 
59]. A typical embedding technique is word embedding, 
which represents words as fixed-length vectors so that simi-
lar words are close to each other in the vector space [58, 59, 
63]. Comparing with Levenstein [51], here “similar” means 
semantic similarity instead of string similarity. Word embed-
dings are based on the distributional hypothesis of Harris 
[25]. We can estimate distances and identify semantic rela-
tions from their vectors.

Word embedding is usually implemented by a model such 
as Continuous Bag-of-Words (CBOW) and Skip-Gram [58]. 
These models build a neural network that captures the rela-
tions between a word and its contextual words. The vector 
representations of words, as parameters of the network, are 
trained with a text corpus [59]. word2vec [58] introduced 
by Mikolov et al. is the most typical method. Another word 
embedding model is GloVe [63], which is an unsupervised 
learning algorithm for obtaining vector representations for 
words. Training is performed on aggregated global word-
word co-occurrence statistics from a corpus, and the result-
ing representations showcase interesting linear substructures 
of the word vector space.

Information captured from corpora substantially increases 
the value of word embeddings to both unsupervised and 
semi-supervised Natural Language Processing (NLP) tasks. 
For example, good representations of both the target word 
and the given context are helpful to various tasks, includ-
ing word sense disambiguation [8], coreference resolution 
and named entity recognition (NER) [11, 55, 73]. The con-
text representations used in such tasks are commonly just 
a simple collection of the individual embeddings of the 

neighboring words in a window around the target word, or 
a (sometimes weighted) average of these embeddings [54]. 
Likewise, a sentence (i.e., a sequence of words) can also 
be embedded as a vector [62]. A simple way of sentence 
embedding is, for example, to consider it as a bag of words 
and add up all its word vectors [39].

2.3  Preliminaries on coreference resolution

Coreference is defined as occurring when one or more 
expressions in a document refer to one entity. CR is a clas-
sical NLP task of finding all expressions that are coreferent 
with any of the entities found in a given text [2, 4, 14, 41]. 
In CR, an entity refers to an object or set of objects in the 
world, while a mention is the textual reference to an entity 
[14].

There are two types of tasks in CR [2]: (1) resolving 
coreference of entities or events (2) whether co-referring 
mentions occur within a single document (WD: within-
document) or across a document collection (CD: cross-doc-
ument). Compared to entity CR, event coreference is con-
sidered to be a more difficult task, mostly due to the more 
complex structure of event mentions [2, 47]. Entity men-
tions are mostly noun phrases, while event mentions may 
consist of a verbal predicate (acquire) or a nominalization 
(acquisition), where these are attached to arguments, includ-
ing event participants and spatio-temporal information [2]. 
WDCR methods provide techniques for the identification of 
mentions in one document that refer to the same underlying 
entity/event, while CDCR methods provide techniques for 
the identification of mentions in different documents [4]. 
This work is most inspired by the CDCR entity methods, 
but at the same time, it is revised for tackling the particu-
larity of EC in the context of RE. We also list some differ-
ences between EC in RE and EC in general NLP contexts 
in Sect. 8.2.

Fig. 2  The overview of DeepCoref 
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3  Approach

To address the challenges mentioned in Sect. 1, we propose 
a method named DeepCoref for resolving EC detection. Fig-
ure 2 presents the overview of DeepCoref. Given a set of 
requirement texts written in natural language and its related 
entities, we firstly truncate their corresponding contexts 
(see Sect. 3.1). Then, we build a context-wise coreference 
network (see Sect. 3.2) for coreference classification. The 
network can predict whether a pair of entities are semanti-
cally equivalent, and the output is the predicted label (1 for 
coreference and 0 for non-coreference). Finally, we cluster 
and normalize all coreferent entities (see Sect. 3.3) accord-
ing to the predicted results among entity pairs.

3.1  Context truncation

Since entity extraction has been widely developed by many 
NLP researches [1, 22, 31, 42, 70], DeepCoref does not 
focus on entity extraction, and utilizes entities that have 
already been extracted as the basic data. In our study, enti-
ties are ready-made and provided from our industry partner.

In this study, the context refers to the neighboring words 
in a window around a certain entity. This step is to truncate 
requirement text centered on an entity with a window size 
as the context related to the entity. The fixed window size 
can also avoid too long texts and align text sequences of 
different length. Given an entity and its related requirement 
text, we first locate the entity and then truncate text centered 
on the entity according to the window size. Entities might 
occur in different positions of one sentence (i.e., near the 
beginning, near the middle and near the end). So we tackle 
different cases according to the rules below. We assume win-
dow size is M, the length of entity denoted as N, the length 
of text sequence before entity denoted as lpre , the length of 
text sequence after entity denoted as lsub:

• If lpre ⩾ ⌈M−N

2
⌉ and lsub ⩾ ⌈M−N

2
⌉ , both previous and sub-

sequent text sequences are truncated by length ⌈M−N

2
⌉.

• If lpre ⩾ ⌈M−N

2
⌉ and lsub < ⌈M−N

2
⌉ , the previous text 

sequence is truncated by length min(lpre,M − N − lsub) , 
and all subsequent words are reserved, where min(⋅) is to 
take the minimum.

• If lpre < ⌈M−N

2
⌉ , all previous words are reserved, and 

the subsequent text sequence is truncated by length 
min(lsub,M − N − lpre) , where min(⋅) is to take the mini-
mum.

The final extracted context is a concatenation of truncated 
previous sequence (denoted as pre), the entity itself (denoted 
as entity) and truncated subsequent sequence (denoted as 
sub): [pre ⊕ entity ⊕ sub] . Finally, we use a special 

symbol [PAD] padding to the length of window size. In this 
work, we set window size M = 128 . 

Figure 3 demonstrates an example of context extraction 
for each case. By context truncation, we obtain the entity and 
its related context (i.e., ⟨context, entity⟩ ). Finally, we perform 
data transformation to format two ⟨context, entity⟩ pairs into 
a context pair (i.e., ⟨context1 , context2⟩ , and a entity pair (i.e., 
⟨entity1, entity2⟩).

3.2  Coreference classification

We build a context-wise coreference network for coreference 
classification between two entities. The architecture of the 
network are shown in Fig. 4. The context-wise coreference 
network takes a pair of entities and their related contexts as 
input and predicts whether two entities are coreferent. The 
network consists of two parts. One is a fine-tuning BERT 
model for learning context representations, and the other is a 
Word2Vec-based network for learning entity representations. 
We concatenate two representations for better combining 
semantic information about the entire contextual sentences 
and individual words. Finally, we use an MLP to fuse two 
representations, and a softmax layer to infer the predicted 
labels.

3.2.1  Fine‑tuning BERT context model

A powerful context representation is helpful for measuring 
context-wise similarity [28]. In many NLP tasks (e.g., entity 
disambiguation and entity/event coreference resolution), the 
context representations are commonly a collection of the 
individual embedding of contextual words (e.g., a weighted 
average of these embeddings). Such methods do not include 
any mechanism for optimizing the representation of the 
entire contextual sentences [54].

To obtain a good context representation, we use BERT 
which is a fine-tuning based and bidirectional pre-training 
representation model [13]. It takes a context pair (i.e., 
⟨context1 , context2⟩ ) as input, and produces a context vector 
representation. Due to the contexts are usually short text, we 
use the model BERTBASE with a relatively small model size, 

Fig. 3  An example of context truncation. The bold words (e.g., prod-
uct manager) are entity words. The red dotted rectangle represents the 
window. Here window size M = 6 , and the length of entity N = 2
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which has 12 layers, 768 hidden dimensions and 12 attention 
heads. In BERT, the input can be a pair of sentences. Two 
contexts are concatenated and fed to the model as a sequence 
pair together with special start and separator tokens: ([CLS] 
context1 [SEP] context2 [SEP]). The transformer encoder pro-
duces a context vector representation (denoted as vctx ) of the 
input pair, which is the output of the last hidden layer at the 
special pooling token [CLS] [13, 46].

3.2.2  Word2Vec‑based entity network

To capture the word-level information of entities, we also 
build a Word2Vec-based network to learn an entity repre-
sentation using word embeddings [59]. It takes an entity pair 
(i.e., ⟨entity1, entity2⟩ ) as input, and produces an entity vector 
representation. We utilize the 300 dimensional word embed-
dings which are pre-trained on a 1.3G Wikipedia corpus3 
with 223M tokens and 2129K vocabularies. It is trained with 
three types of features (word features, n-gram features and 
character features) using the skip-gram model with negative 
sampling [44].

For each entity in the pair ⟨entity1, entity2⟩ , we first seg-
ment words and obtain the word embedding of each word. 
Then, we use the average of embeddings of all words in one 
entity to represent the embedding of this entity (denoted as 
e). So the entity pair can be represented as a vector (denoted 
as p) which is concatenated by the embeddings of two enti-
ties ( p = [e1 ⊕ e2] ). Since the dimension of word embed-
dings is 300, the dimension of e is 300 and the dimension 
of p is 600. After that, p is fed into a fully connected layer 
to produce an entity vector representation (denoted as vt).

3.2.3  Representation fusion

The output of two parts of context-wise coreference net-
work: vctx is a representation of context pair, and vt is a repre-
sentation of entity pair. We need to fuse two representations 
to obtain semantic information in both sentence level and 
word level. The output is the label which represents whether 
two entities are coreferent.

Following previous practice of representation fusion [2], 
we concatenate vctx and vt ( vf = [vctx ⊕ vt] ). Then, we input 
vf  into MLP. MLP has three layers:

• A fully connected layer, which is to fuse vctx and vt into 
one vector by w⊤vf  , where w is a learned parameter vec-
tor. w can be trained to make a trade-off between vctx and 
vt.

• A dropout layer, which is used to avoid over-fitting [71] 
by randomly masking some neuron cells.

• An output layer, which transforms the vector into a 
2-dimensional vector [s1, s2] , representing two labels 
(coreferent or non-coreferent).

The output of MLP [s1, s2] represents the scores of the two 
classes, respectively, where si ∈ R . Finally, we perform soft-
max on this 2-dimensional vector, which can be specified as:

Then [s1, s2] can be normalized to probabilities [p, 1 − p] , 
where p ∈ [0, 1] . The network can infer the predicted label 
based on these probabilities.

(1)Softmax(si) =
esi

∑2

j=1
esj

...

...

...

E[cls] E1 En E[sep] E[sep]EmE1

[CLS] Tok 1 Tok N Tok MTok 1[SEP]

... ...

... ...

Context1 Context2

Tok 1 Tok N Tok MTok 1
... ...

Entity1 Entity2

Word 
Embedding

Word 
Embedding

Word 
Embedding

Word 
Embedding

Word Vector

...

...

...

...

Average Average

...

Concat

MLP

1-PP Softmax

Concat

[SEP]

Entity Vector
Context Vector

Word Vector Word VectorWord Vector

Label

3.2.1 Fine-tuning BERT Context Model

3.2.3 Representation Fusion

3.2.2 Word2vec-based Entity Network

Fig. 4  The architecture of context-wise coreference network

3 https:// dumps. wikim edia. org.

https://dumps.wikimedia.org.
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3.2.4  Training details and implementation

Training details: Since the task is a classification problem, 
we use cross-entropy as the loss function, which is speci-
fied as:

where p(x) and q(x) are the probability distribution of pre-
dicted label and ground-truth label, respectively.

The design of the context-wise coreference network 
makes all parameters jointly fine-tuned on a specific task 
(i.e., coreference classification), which can benefit from 
large corpora pre-training in a relatively inexpensive way. 
It also alleviates insufficient annotated resource problem to 
some extent. Parameters in BERT are fine-tuned to obtain a 
better context representation according with specific tasks 
and data. Parameters in Word2Vec-based network are trained 
to obtain a better entity representation based on pre-trained 
word embeddings. Parameters in MLP are trained to better 
fuse both representations, and make a trade-off between two 
representations to reach a more accurate classification result.

Implementation: We implement context-wise coreference 
network using Transformers4 [77] which is an open-source 
library for natural language understanding and natural lan-
guage generation with over 32+ pre-trained models built 
on Pytorch5.

3.3  Clustering and normalization

Given a pair of entities and their corresponding contexts, 
we can use our trained context-wise coreference network 
to predict whether two entities are coreferent. Based on the 
coreference relations of all entity pairs, we can establish a 
non-coreferent entity dictionary by two steps: clustering and 
normalization.

(2)Loss =
∑

x

p(x) ⋅ log(
1

q(x)
)

3.3.1  Clustering

In this step, we cluster all the entities that are coreferent to 
the same concept into one cluster. Thus, different clusters 
will indicate different concepts with all their coreferent enti-
ties. We define EC in RE has two properties: Symmetry and 
Transitivity. Let E be the entity set, then

• Symmetry: For ei, ej ∈ E , if ei is coreferent to ej , then ej 
is coreferent to ei.

• Transitivity: For ei, ej, ek ∈ E , if ei is coreferent to ej , and 
ej is coreferent to ek , then ei is coreferent to ek.

Ideally, each entity can be assigned into some cluster based 
on predicted results of entity pairs following these two prop-
erties. However, one challenge is that there might be con-
flicts among predicted results of entity pairs. For example, 

4 https:// github. com/ huggi ngface/ trans forme rs.
5 https:// pytor ch. org.

https://github.com/huggingface/transformers.
https://pytorch.org.
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if entity A is predicted coreferent to entity B, and entity B 
is predicted coreferent to entity C, then entity A should be 
predicted coreferent to entity C, and three entities should be 
assigned into one cluster. However, there exists one situation 
that DeepCoref wrongly predicts entity A and entity C as 
non-coreferent. Such conflicts are caused by misclassifica-
tion in predicted results. Therefore, we construct a clustering 
algorithm to cluster all entities based on the predicted results 
of entity pairs and resolve conflicts simultaneously.

Concretely, we build a graph, where we treat all entities as 
nodes, and coreference relations between entities as edges. 
We take the probability of two entities being predicted coref-
erent by coreference network, as the weights of edges. Each 
edge can be denoted as ⟨ei, ej, p⟩ , where ei and ej are entities 
(nodes), and p ( p ∈ [0, 1] ) indicates the probability of entity 
ei and entity ej being coreferent. To avoid the conflicts, we 
first remove edges whose weights p are less than a ratio r 
(line 2). The ratio r is an empirical value, which is set as 0.7 
in this work. It indicates that only two entities whose prob-
ability of being coreferent is over 0.7 would be assigned into 
one cluster, because the lower predicted confidence might 
lead to conflicts. Then, we traverse all edges (line 3-26). If 
neither ei and ej have been assigned a cluster id, we assign 
a new one to them (line 4-7). If one of ei and ej has been 
assigned a cluster id, we assign this id to the one without 
an id (line 8-13). When both ei and ej have been assigned 
a cluster id, if they belong to different clusters, we need to 
merge the cluster with the higher id into the cluster with the 
lower id (line 14-25). If they belong to the same cluster, we 
skip it. Finally, we assign each entity, which is not assigned a 
cluster id after traversal, a new cluster id (line 27-32). More 
details can be seen in Algorithm 1.

3.3.2  Normalization

After clustering, we normalize the entities by selecting one 
of coreferent entities belonging to the same cluster. Thus, 
all coreferent entities in the same cluster are normalized 
into one name. More specifically, for each cluster, we apply 
TextRank algorithm [57] to construct a weighted word graph 
(denoted as G = (V ,E) ) based on the word co-occurrence 
relations in the contextual texts of each cluster. The nodes 
V in the graph represents the words in the context, and the 
edges E in the graph represents the co-occurrence relations 
between word Vi and its neighboring word Vj . The TextRank 
score of node Vi is specified as:

where In(Vi) is the node set that points to the node Vi , and 
Out(Vj) is the set of nodes pointed to by the node Vj . | ⋅ | is 
the number of the nodes. d is the damping coefficient, and 

(3)S(Vi) = (1 − d) + d ∗
∑

Vj∈In(Vi)

1

|Out(Vj)|
S(Vj)

the value 0.85 is taken generally. The bigger score represents 
the more “importance” of the vertex within the graph. Then 
for each coreferent entity in the same cluster, we perform 
word segmentation, and calculate the TextRank score of 
each word. We treat the average score as the score of the 
whole entity, and select the entity with the highest score as 
the normalized entity.

4  Experiment design

4.1  Research questions

Our evaluation addresses the following four research 
questions.

RQ1 (Coreference classification) How effective is the 
coreference classification of DeepCoref compared with 
existing techniques? To investigate the effectiveness of 
coreference classification of our method, we conduct 
10-fold cross-validation using data from our industry part-
ner. We compare the performances of three baselines (see 
Sect. 4.3.1). These methods include syntactic or semantic 
similarity measures to detect coreference on word level or 
sentence level. We compare these methods to demonstrate 
the advantage of combining entity and context represen-
tations. Besides, we also present statistical results by the 
project to examine the stability and generalizability across 
different projects.

RQ2 (Clustering and normalization) How effective is 
the clustering based on the predicted results of entity pairs 
derived from coreference classification? In RQ2, we inves-
tigate the performance of clustering from three perspectives.

• Clustering evaluation: To verify the impact of different 
coreference techniques (i.e., Word2Vec, LSI and Lev-
enstein) on the clustering performance, we perform the 
algorithm introduced in Sect. 3.3.1 on coreferent entity 
pairs obtained by DeepCoref and three baseline coref-
erence techniques, and compare their clustering perfor-
mance. To demonstrate the effectiveness of our proposed 
clustering method, we compare the performance of Deep-
Coref with two commonly used clustering algorithms 
(see Sect. 4.3.2). We use six metrics to evaluate the clus-
tering performance by comparing the ground-truth and 
predicted cluster labels.

• Example analysis To present the clustering results more 
intuitively, we give network graphs to illustrate the dif-
ferences of clusters among DeepCoref and two cluster-
ing baselines. In addition, we present the examples of 
coreferent/non-coreferent entities of clusters in network 
graphs.
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• Classification improvement To verify the effectiveness 
of our proposed clustering method on resolving con-
flicts caused by misclassification, we also present the 
performance improvement on coreference classification 
brought by clustering.

RQ3 (Ablation experiment) How effectively does each 
component of context-wise coreference network facilitate 
coreference classification? To examine the performance 
enhancement introduced by context representations and 
entity representations, respectively, we construct three vari-
ants (see Sect. 4.4): DeepCoref-ctx, DeepCoref-entity and 
DeepCoref-LSI. We conduct 10-fold cross-validation on 
DeepCoref and three variants, respectively, to demonstrate 
the effectiveness for combining two representations.

RQ4 (Data sensitivity) To what degree does data size 
influence coreference classification results? In RQ4, we 
conduct an experiment by increasingly enlarging the size 
of training data to examine the sensitivity between perfor-
mance enhancement and data augmentation. The amount 
of data verifies whether fine-tuning methods can alleviate 
low-resource problem. We also give the time consumption 
with the increase of data.

4.2  Data preparation

Our experimental data are collected from the repositories 
of China Merchants Bank (CMB)6. We collaborate with the 
project management department of CMB and retrieve 21 
projects from its repository, and each project has a set of 
requirement texts with corresponding entities that occurred 
in that text. The total number of text-entity pairs is 1949. The 
entities are recognized by requirement engineers with the 
support of automated tools, audited by project management 
department and well-maintained through the requirement 
evolution. We prepare data in the following steps: Pre-pro-
cessing, Sampling and Ground-truth Labeling.

4.2.1  Pre‑processing

For each entity and its related requirement text, we filter 
noisy tokens such as URL, HTML tags and SQL statements 
with Ekphrasis7 [3] which is a collection of light-weight 
text processing tools. These tokens are produced by their 
management system but not removed when dumped from 
the system. Then, we filter some template words (e.g., “I 
would like to”) which cannot contribute to the result but 
introduce noise, especially for contextual semantic similar-
ity. As the BERT language model has its own vocabulary 

and pre-processing steps, we do not perform other pre-pro-
cessing to deal with punctuations and specific tokens.

4.2.2  Sampling

After pre-processing, we truncate the context for each 
entity, which is demonstrated in Sect. 3.1. We obtain 1949 
⟨context, entity⟩ (denoted as ctx-entity pair) pairs in total 
across all projects. Entities from different projects are defi-
nitely different no matter how similar their semantics are, 
so we sample two ctx-entity (i.e., ⟨ctx-entity1 , ctx-entity2⟩ ) 
from the same project in a combination way. The combina-
tion step is to build relations among ⟨context, entity⟩ pairs for 
ground-truth labeling.

4.2.3  Ground‑truth labeling

These requirements and entities are domain-specific, so it is 
challenging for data labeling. To guarantee the accuracy of 
the labeling results, the labeling process follows three steps:

• The project management department of CMB assigns 
samples (i.e., ⟨ctx-entity1 , ctx-entity2⟩ pairs) as well as 
original requirement texts for reference to requirement 
engineers according to the project team so that each 
annotator can label the samples belonging to his/her own 
products.

• The labeling results withdrawn from each project team 
are reviewed by the project management department.

• As for samples which are annotated to different labels, 
two teams would discuss and decide through voting. Only 
those samples where both teams make a full agreement 
can be included in our dataset.

In addition, the labeling process strictly follows the two 
properties (symmetry and transitivity) of coreference rela-
tion to avoid inconsistency.

Finally, we totally collect 5,736 labeled data, and the 
agreement between the labeling results from project team 
and the results reviewed by project management team takes 
up 5,083 (88.62%). The Cohen’s Kappa reaches 0.77. After 
discussion and voting, common consensus is reached for 
every entity pair. The two classes are extremely imbalanced 
(i.e., the majority of the samples are non-coreferent) after 
labeling. We use under-sampling technique to balance two 
classes. Finally, we obtain 1853 labeled samples ( ⟨ctx-entity1 , 
ctx-entity2, label⟩ ). The positive labels (897, 48.41%) mean 
ctx-entity1 and ctx-entity2 are coreferent, negative labels (956, 
51.59%) for non-coreference. The total number of entities in 
our dataset is 639. These entities form 355 clusters, and each 
cluster contains entities which are coreferent to the same 
concept. This indicates that there exists many small clusters, 6 It is one of the world’s top five hundred commercial banks.

7 https:// github. com/ cbazi otis/ ekphr asis.

https://github.com/cbaziotis/ekphrasis.
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even some clusters only contain one single entity (i.e., no 
other coreferent entities).

4.3  Baselines

To further demonstrate the advantages of DeepCoref, we 
compare it with three commonly used techniques for coref-
erence classification, and two commonly used methods for 
clustering.

4.3.1  Baselines for coreference classification

Word2Vec: Ferrari et al. [21] present a method based on 
word embeddings to support the identification of potentially 
ambiguous terms in the context of requirements elicitation 
interviews and group meetings. The “terms” in their context 
is still word-level, or the word itself is a phrase processed by 
word segment or text chunking. Word embedding provides 
a good semantic representation on word level. However, 
in our work, entities are not just single words but multiple 
words. We use an average of word embeddings to represent 
an entity, and then compute a cosine similarity score for 
coreference detection.

LSI: Falessi et al. [17] use LSI to identify equivalent 
requirements after comparing several NLP techniques on 
a given dataset. It is an IR-based semantic sentence-level 
method for representing a set of documents as vectors in 
a common vector space. LSI has been employed in a wide 
range of software engineering activities such as categoriz-
ing source code files [49], detecting high-level conceptual 
code clones [52], and recovering traceability links between 
documentation and source code [53], which is considered 
to be able to resolve the polysemy problem as well [12, 48, 
75]. We build an LSI model to demonstrate its capability for 
context representations.

Levenstein: It is a syntactic similarity measure by cal-
culating a score for a given pair of entities by finding the 
best sequence of edit operations (i.e., deletion, insertion and 
substitution) to convert one entity into the other [1, 51]. We 
use the implementation in library Distance8.

4.3.2  Baselines for clustering

K-Means: It is a commonly used clustering algorithm. To 
compare with our proposed clustering algorithm, we vector-
ize entities following the idea of DeepCoref. Concretely, we 
first encode each entity with word embeddings, and encode 
corresponding contexts with BERT. Then, we concatenate 
the two vectors to represent the entities. Finally, we run 
K-Means on these vectors to assign all entities into clusters.

DBSCAN [15]: It is a density-based algorithm for dis-
covering clusters of arbitrary shape. Similarly, we encode 
entities with word embeddings and contexts with BERT, 
and then concatenate the two vectors to represent entities. 
Finally, we run DBSCAN to cluster all entities.

We implement the two clustering algorithm with the 
library scikit-learn9, and apply the optimal hyper-parameters 
after tuning for the best performance.

4.4  Experimental setup

For hyper-parameter settings, the learning rate is set 10−5 . 
The optimizer is Adam [36] algorithm. We use the mini-
batch technique [43] for speeding up the training process 
with batch size 8. The drop rate is 0.1, which means 10% of 
neuron cells will be randomly masked to avoid over-fitting. 
These hyper-parameter are tuned carefully for best perfor-
mance, and keep unchanged across all experiments.

We conduct 10-fold cross-validation [37] on the data-
set collected from CMB in RQ1 and RQ3. We randomly 
divide our dataset into ten parts. We use nine of those parts 
for training and reserve one part for testing. We repeat this 
procedure 10 times each time reserving a different part for 
testing. All the experiments are conducted based on the same 
data folds to avoid the impact of different data partitions. In 
RQ2, for each coreference technique, we keep the predicted 
results of each fold, then we can obtain the predicted results 
of the whole dataset by merging 10-fold results. After that, 
we construct predicted clusters of each coreference tech-
nique by performing Algorithm 1. For clustering baselines, 
We apply K-Means and DBSCAN to the combined vector 
representations of entities and contexts to obtain predicted 
clusters. In RQ4, we randomly split data into the training 
set (90%) and testing set (10%), and keep the testing set 
unchanged. Then we enlarge the size of training set, and 
evaluate on the fixed testing set.

RQ1 (Coreference classification): RQ1 is to question the 
effectiveness of coreference classification of DeepCoref 
comparing with existing techniques. In this experiment, we 
compare the performance of DeepCoref with three methods 
(Word2Vec, LSI, Levenstein distance). Word2Vec uses an 
average of word embeddings to represent an entity, which 
is to investigate the performance of entity representation 
with word embeddings. LSI is built on the concatenation 
of both context and entity to investigate the performance of 
the combination of context and entity representation with 
LSI. Levenstein is used to measure the distance between 
entities to investigate the performance of simple syntactic 
methods. The output of Levenstein is a similarity score. The 
outputs of Word2Vec and LSI are vector representations, and 

8 https:// github. com/ doukr emt/ dista nce. 9 https:// scikit- learn. org.

https://github.com/doukremt/distance.
https://scikit-learn.org.
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subsequently, we infer the predicted label by computing sim-
ilarity score via cosine similarity [24]. So we need a similar-
ity ratio to decide whether two entities are coreferent, which 
should be tuned carefully. We set the ratio of Word2Vec, 
LSI and Levenstein as 0.85, 0.67 and 0.25, respectively (see 
details for ratio selection in Sect. 6.1). In addition, we give 
statistical results by the project to examine the stability and 
generalizability across different projects.

RQ2 (Clustering and normalization): RQ2 is to question 
the effectiveness of clustering of DeepCoref.

• Clustering evaluation: We perform Algorithm 1 on each 
coreference technique (i.e., Word2Vec, LSI and Lev-
enstein), and use six metrics (see Sect. 4.5) to evaluate 
the performance of clustering. Note that in order to per-
form Algorithm 1 on Word2Vec, LSI and Levenstein, 
we simply treat the predicted labels as the probability 
of two entities being predicted coreferent (i.e., label 1 
is 100%, and label 0 is 0%). We also compare the per-
formance of DeepCoref and two clustering baselines 
(i.e., K-Means and DBSCAN) on six metrics. More 
specifically, we encode entities with word embeddings 
and corresponding contexts with BERT, and concatenate 
them as vector representations of entities. Then we per-
form K-Means and DBSCAN on these vectors to cluster 
entities.

• Example analysis: For a more intuitive illustration, we 
also present network graphs for clusters of the ground-
truth, DeepCoref and two clustering baselines, respec-
tively. For clustering results obtained by each method, 
we plot the clusters with network graphs, where nodes 
denote entities. The entities (nodes) belonging to the 
same cluster are gathered together. We use different color 
to distinguish different clusters according to the cluster 
labels in the ground-truth. The entities with the same 
color belongs to the same cluster in the ground-truth. 
We only color top eight clusters for the ground-truth and 
each method, and other relatively small clusters are all 
painted grey, because we totally have 355 clusters, and 
adding more clusters with few entities in the graph would 
reduce clarity. In addition, we present the examples of 
coreferent/non-coreferent entities according to clusters 
in the network graph.

• Classification improvement: To investigate the effec-
tiveness of our proposed clustering method on resolv-
ing conflicts caused by misclassification, we retrieve the 
coreference classification results of entity pairs based on 
the clustering results, and compare with the ground-truth 
labels.

RQ3 (Ablation experiment): RQ3 is to question the contribu-
tion of each component of DeepCoref to the performance 
enhancement of coreference classification. We demonstrate 

the performance enhancement introduced by each compo-
nent of context-wise coreference network by constructing 
DeepCoref -ctx and DeepCoref -entity. DeepCoref-ctx only 
contains the fine-tuning BERT model for context repre-
sentations without the Word2Vec-based network for entity 
representations, and DeepCoref-entity is totally opposite 
to DeepCoref-ctx only with Word2Vec-based network but 
without BERT model. In addition, we build DeepCoref -LSI, 
which is a variant of DeepCoref by replacing the BERT 
with LSI to produce context vectors, and other parts remain 
unchanged. DeepCoref-LSI is to demonstrate the advantage 
of fine-tuning BERT over IR-based technique for computing 
context representation. In this experiment, we only replace 
each component, and keep all hyper-parameter settings the 
same as RQ1.

RQ4 (Data sensitivity): RQ4 is to question the influence 
of data size on the performance of coreference classification. 
We conduct an experiment by increasingly enlarging the size 
of training data to examine the sensitivity between perfor-
mance enhancement and data augmentation. We present 
the time consumption with the increase of data as well. We 
first randomly split all data into two parts (90% as training 
set, 10% as testing set), and keep the testing set unchanged 
across all experiments. Then, we enlarge the size of training 
set from 5% to 90%, where we use all training data when 
the ratio reaches 90%. For each ratio, we repeat the experi-
ment for five times, and use a boxplot to show the evaluation 
metrics, and take the average time of five experiments as 
consuming time.

The experimental environment is a desktop computer 
equipped with a NVIDIA 1060 GPU, Intel Core i7 CPU, 
16GB RAM, running on Ubuntu OS.

4.5  Evaluation metrics

We use commonly used metrics such as precision, recall and 
F1-Score [66], to evaluate the performance of coreference 
classification. We mentioned that we collect and annotate 
data in cooperation with CMB (see Sect. 4.2). Given the 
ground-truth label and predicted label from DeepCoref, we 
calculate metrics for each class and take their unweighted 
mean as final results. We compute the metrics of all testing 
data for each round of 10-fold cross-validation to measure 
the performance. As for the performance by the project in 
RQ1, we compute the metrics for each project. In addition, 
some baseline methods need to measure the similarity to 
decide whether two entities are coreferent, so we use cosine 
similarity [24] to compute the distance between two vector 
representations.

Precision refers to the ratio of the number of correct pre-
dictions of positive labels to the total number of predictions 
of positive labels.
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Recall refers to the ratio of the number of correct predic-
tions of positive labels to the total number of positive labels.

F1-score is the harmonic mean of precision and recall.
Cosine similarity computes similarity as the normalized 

dot product of X and Y:

where X and Y are two vectors.
As for RQ2, given the ground-truth clusters, many met-

rics have been proposed in the literature to evaluate the 
clustering performance. Following the previous work [29], 
we select the metrics including Adjusted Rand Index (ARI) 
[38], Normalized Mutual Information (NMI) [61], homoge-
neity (HOM) [68, 69], completeness (COM) [68], V-meas-
ure (V-M) [68], and Fowlkes-Mallows Index (FMI) [50]. 
Higher value indicates better clustering performance for all 
six metrics. For clarity, we take all entities in our dataset as a 
fixed list, and we denote T as the ground-truth cluster labels, 
and P as the predicted cluster labels.

Adjusted rand index (ARI) takes values in [−1 , 1], reflect-
ing the degree of overlap between the two clusters. It is 
improved based on Rand Index (RI). The raw RI is computed 
by RI = a+b

(

n

2
)

 , where a is the number of pairs that are assigned 

in the same cluster in T and also the same cluster in P, and 
b is the number of pairs that are assigned in different clusters 
both in T and P. ( n

2
) is the total number of unordered pairs 

in a set of n entities. The raw RI score is then “adjusted for 
chance” into the ARI score using the following scheme:

where E(RI) is the expected value of RI. The ARI is thus 
ensured to have a value close to 0.0 for random labeling 
independently of the number of clusters and samples.

Normalized mutual information (NMI) is a normali-
zation of the Mutual Information (MI) score to scale the 
results between 0 (no mutual information) and 1 (per-
fect correlation). It interpret the cluster performance 
information-theoretically.

where  H(T) i s  t he  en t ropy  of  set  T ,  i . e . , 
H(T) = −

∑�T�
i=1

p(i)log(p(i)) and p(i) = Ti

N
 is the probability 

that an object picked at random falls into class Ti . The 
MI(T ,P) is the mutual information between T and P: 
MI(T ,P) =

∑�T�
i=1

∑�P�
j=1

p(i, j)log
�

p(i,j)

p(i)p(j)

�
.

Homogeneity (HOM) measures all of its clusters contain 
only entities which are members of a single class by

(4)cosine(X, Y) =
X ⋅ Y

‖X‖ × ‖Y‖

(5)ARI =
RI − E(RI)

max(RI) − E(RI)

(6)NMI(T ,P) =
MI(T ,P)

√
H(T)H(P)

Completeness (COM) measures all  the entities that are 
members of a given class are elements of the same cluster by

whereH(T ∣ P) is the conditional entropy of the ground-truth 
classes given the predicted cluster labels, while H(P ∣ T) is 
calculated by swapping the positions of T and P.

V-measure (V-M) is the harmonic mean of HOM and 
COM.

Fowlkes-Mallows Index (FMI) ranges in [0, 1]. It is defined 
as the geometric mean between of the precision and recall:

where TP is the number of True Positive (i.e., the number 
of pairs of entities that belong to the same clusters in both T 
and P), FP is the number of False Positive (i.e., the number 
of pairs of entities that belong to the same clusters in T but 
not in P) and FN is the number of False Negative (i.e., the 
number of pairs of entities that belong to the same clusters 
in P but not in T).

5  Results and analysis

5.1  Answering RQ1: coreference classification

This section is to demonstrate the effectiveness of Deep-
Coref comparing with baselines. Figure 5 presents the per-
formance of coreference classification on DeepCoref and 
baselines, respectively, across the 10-fold cross-validation. 
We can see that DeepCoref can achieve 96.10% precision 
and 96.06% recall on average, which are much higher than 
other baselines. The precision and recall of Word2Vec are 
84.57% and 84.21%, respectively, LSI 84.12% and 84.01%, 
Levenstein 84.65% and 83.46%. In addition, the length of the 
box of DeepCoref is relatively lower than baselines, further 
signifying the stability of the performance.

Figure 6 presents the precision and recall by 21 projects. 
We can see both precision and recall of DeepCoref are more 
stable and higher than other baselines across projects. The 
average precision and recall of DeepCoref on projects reach 
93.43% and 93.72%, Word2Vec 79.79% and 79.09%, LSI 
81.91% and 81.90%, Levenstein 77.48% and 80.17%. The 

(7)h = 1 −
H(T ∣ P)

H(T)

(8)c = 1 −
H(P ∣ T)

H(P)

(9)v = 2 ×
h × c

h + c

(10)FMI =
TP√

(TP + FP) × (TP + FN)
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text presentation styles are distinct in different projects, so 
the results of Word2Vec and Levenstein indicate large differ-
ences in performance on different projects. These two meth-
ods lack sentence-level information of context, thus cannot 
capture the contextual semantic differences across projects 
only using entity information. LSI fluctuates largely in sev-
eral projects although it can capture the sentential contextual 
semantics. This is mainly because LSI is constructed based 
on statistical information on current training data, the repre-
sentation ability is less powerful than models pre-trained on 
large corpora and fine-tuned with training data. By contrast, 
DeepCoref which is more stable, obtains a more powerful 
representation by combining the contextual semantics, thus 
more adaptable to different presentation styles.

The reasons why DeepCoref noticeably outperforms the 
three baselines are:

•  Type="SmallCaps">DeepCoref uses both sentence-
level and word-level semantics thus can capture more 
information from contexts and entities.

•  Type="SmallCaps">DeepCoref uses pre-trained models 
thus can benefit from large general corpora pre-training.

•  Type="SmallCaps">DeepCoref uses the fine-tuning 
technique, which can improve adaptation on domain-
specific tasks.

5.2  Answering RQ2: clustering and normalization

This section is to demonstrate the performance of clustering.
Clustering evaluation: Table  1 shows the clustering 

evaluation results on six metrics. Compared with the other 
three coreference techniques (i.e., Word2Vec, LSI and 

Levenstein), DeepCoref has the best performance on all six 
metrics. The comparison among them can help understand 
the impact of different coreference techniques on the cluster-
ing performance. For example, it is easy to understand that 
DeepCoref has the best performance of coreference classi-
fication, which leads to the best performance of clustering. 
The clustering performance of Word2Vec, LSI and Leven-
stein are different, especially on ARI and FMI, although 
they have little difference on the performance of coreference 
classification. This indicates that some misclassifications of 
entity pairs are fatal, which can generate new clusters or split 
the ground-truth clusters, and lead to performance decline of 
clustering. The best performance of clustering from Deep-
Coref verifies its effectiveness on coreference classification 
further. As for the comparison between DeepCoref and two 
clustering baselines, DeepCoref also outperforms K-Means 

Fig. 5  RQ1: The performance of coreference classification of Deep-
Coref over baselines. The cross is the mean value of 10-fold cross-
validation

Fig. 6  RQ1: The performance of coreference classification of Deep-
Coref over baselines by project. The number of projects is 21 
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and DBSCAN on all six metrics, which indicates our pro-
posed clustering method is more effective than baselines.

The pairwise metrics (i.e., ARI and FMI) are sensitive to 
the cases when entity pairs which belong to the same cluster 
in the ground-truth are wrongly assigned into different clus-
ters, or which belong to different clusters, are wrongly placed 
into the same cluster. We examine the clustering results and 
find that clusters obtained by baselines contain more newly 
formed clusters (e.g., X clusters in Fig. 7c) or splitted clus-
ters (e.g., cluster A1 and A2 in Fig. 7d) compared with Deep-
Coref. Therefore, DeepCoref has an obvious advantage on 
ARI and FMI as shown in Table 1. The entropy-based met-
rics (i.e., NMI, HOM, COM and V-M) mainly evaluate the 
changes of two distributions based on information entropy 
theory. From the perspective of the number of clusters, there 
are totally 355 clusters in the ground-truth. The total number 
of clusters obtained by DeepCoref is 359, while the number 
of clusters obtained by K-Means and DBSCAN are 350 and 
376, respectively. All methods don’t change the distribution 
of the entire clusters very much, which conforms to the small 
improvement on NMI, HOM, COM and V-M in Table 1. 
However, the coreference detection task needs to assign 
coreferent (non-coreferent) entities into the same (different) 
clusters correctly, rather than only keeps the distributions of 
two clusters unchanged. Therefore, the pairwise metrics are 
more significant than entropy-based metrics to requirement 
engineers, which are exactly the advantages of DeepCoref 
over baselines.

Example analysis: More details can be found in Fig. 7, 
where we present top eight clusters of ground-truth, Deep-
Coref and two baselines. We can observe that the clustering 
result of DeepCoref is roughly the same as the ground-truth, 
but the clustering results of other baselines are somewhat 
different from the ground-truth. More specifically, we first 
compare Fig. 7a and b. The top eight clusters obtained by 
DeepCoref roughly conform to the ground-truth, where the 
cluster A, C, F and G are exactly the same, while the cluster 
B′ , D′ , E′ and H′ miss some entities. From the comparison 
between Fig. 7a and c, we can find that only the cluster E′ is 
relatively accurate, which misses five entities. The cluster Y1 
and Y2 consist of nodes from ground-truth cluster D and H, 
and other small (grey) clusters. The other clusters denoted 
as X are newly formed from entities which originally belong 
to small (grey) clusters in the ground-truth. The top eight 
clusters also changed compared with the ground-truth. As 
for Fig. 7(d), the cluster A in the ground-truth is splitted into 
two clusters (i.e., A1 and A2 ). The cluster Y1 and Y2 contain 
nodes from ground-truth cluster D and H, and other small 
(grey) clusters. Four newly formed clusters become top eight 
clusters.

We present the examples of coreferent/non-coreferent 
entities shown in Fig. 7. Table 2 demonstrates all 18 coref-
erent entities in cluster A, which are all correctly identified 
by DeepCoref. We observe that all 18 examples share some 
similar words in entities and related contexts, e.g., “warn-
ing”, “list”, and “stage” appearing in entities; “manager”, 

Fig. 7  RQ2: The clustering results of ground truth, DeepCoref and baselines

Table 1  RQ2: Clustering 
Performance

Method ARI NMI HOM COM V-M FMI

DeepCoref 0.929 0.992 0.995 0.990 0.992 0.930
Word2Vec 0.794 0.973 0.980 0.967 0.973 0.796
LSI 0.835 0.978 0.963 0.986 0.978 0.840
Levenstein 0.582 0.958 0.927 0.985 0.958 0.631
K-Means 0.569 0.957 0.963 0.951 0.957 0.580
DBSCAN 0.680 0.966 0.968 0.964 0.966 0.684
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Table 2  RQ2: Examples of coreferent entities from cluster A of DeepCoref 

# Entity Context

1 Warning customer list in tracking stage Managers can view the warning customer list in tracking stage to check the comple-
tion of tracking stage in time.

2 List of alert customers in implementation stage Managers can view the list of alert customers in implementation stage to check the 
completion of the implementation stage in time

3 Alert customer list in listening stage Managers can view alert customer list in listening stage and check the completion 
of listening in time.

4 Customer in tracking stage The manager can see the completion of customer in tracking stage.
5 Customer in implementation stage Managers can see customer in implementation stage to follow their completion.
6 Customer in listening phrase Managers can view customer in listening phrase to follow their completion.
7 Warning list during tracking stage Account managers can examine the warning list during tracking stage to check the 

completion.
8 Alert list in implementation stage Account managers can view the alert list in implementation stage to check their 

completion.
9 Warning list in demo stage The managers can view the warning list in demo stage to examine the completion of 

the demo stage.
10 Warning customer information in tracking stage Managers can check warning customer information in tracking stage, so that they 

can follow the completion.
11 Warning customer information during implementation Managers can view warning customer information during implementation to track 

the completion of implementation stage.
12 Early-warning customer information in listening stage Managers can check early-warning customer information in listening stage, so that 

they can follow the completion.
13 Warning user list in tracking stage Managers can view warning user list in tracking stage to follow the completion of 

tracking stage.
14 Alert user in implementation stage The managers can view alert user in implementation stage to follow the completion 

of implementation stage.
15 Warning customer in listening stage Managers can view warning customer in listening stage to follow the completion of 

listening stage.
16 Warning customer table during tracking stage Managers can view the warning customer table during tracking stage to check the 

completion of tracking stage.
17 List of warning customer in implementation stage Managers can view the list of warning customer in implementation stage to check 

the completion of tracking stage in time.
18 Alarm list in demo stage Managers can view the alarm list in demo stage, so that they can check the comple-

tion of demo stage.

Table 3  RQ2: Examples of non-coreferent entities from top 8 clusters of DeepCoref 

cid Normalized Entity Context

A Warning customer list in tracking stage Managers can view the warning customer list in tracking stage to check the completion of 
tracking stage in time.

B’ Company announcement information Account managers can check the company announcement information outside the bank to 
get more comprehensive information about the client.

C Trading rules for the fund Account managers can view the trading rules for the fund on the fund details page.
D’ Completion of monthly target The center supervisor can view the performance statistics and the completion of monthly 

target of the account manager.
E’ Customer basic information The system can provide a public interface to maintain the customer basic information and 

manage the customer maintenance information uniformly.
F Project information The project manager can modify the project information to keep it accurate.
G Account information of cooperative institutions The investment manager has the function of editing or deleting the account information of 

cooperative institutions, so that I can adjust the historical error information.
H’ Contract information Project managers can add contract information and contracts can be reviewed paperless in 

the system
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“view”, and “completion” appearing in contexts. Therefore, 
they can be easily inferred as coreferent entities by Deep-
Coref Then we turn to Table 3, it presents the normalized 
entity and related contexts of top 8 clusters. We can observe 
that both entities and contextual words are greatly different 
across clusters. The results of two tables shows the effective-
ness of clustering coreferent entities, and the effectiveness 
of assigning a normalized name to each cluster.

Classification Improvement: Table 4 presents the perfor-
mance improvement on coreference classification brought 
by clustering. We can observe that clustering can improve 
the precision, recall and F1 of coreference classification 
by 2.52%, 2.57% and 2.55%, respectively. We examine the 
differences in the results, and find that our proposed clus-
tering method improves the classification performance by 
correcting the classification result with low confidence of 
two entities. Such misclassified cases tend to produce false 
nodes or miss true nodes between two clusters, which leads 
to wrongly or not merging clusters. Totally, our proposed 
clustering method corrects 87 samples which are misclassi-
fied by coreference network, although introduces 19 wrong 
corrections, which improves the overall performance of 
coreference classification.

In summary, the advantage of DeepCoref over other 
methods on evaluation metrics and network graphs indi-
cates that it can cluster entities accurately based on the pre-
dicted results from context-wise coreference network. This is 
because compared with other methods, DeepCoref can cap-
ture semantics more efficiently by combining the semantics 
of both entities and contexts after performing coreference 
classification.

5.3  Answering RQ3: ablation experiment

This section is to demonstrate the different contribution of 
each component of DeepCoref to coreference classification. 
Figure 8 presents the performance of coreference classifica-
tion on DeepCoref and three variants, respectively, across 
the 10-fold cross-validation. The average of precision and 
recall of DeepCoref-ctx reach 79.83% and 68.21%, Deep-
Coref-entity 63.17% and 61.77%, DeepCoref-LSI 66.25% 
and 62.62%, respectively. The performance of DeepCoref is 
much higher and more stable than three variants.

The comparison among DeepCoref, DeepCoref-ctx and 
DeepCoref-entity indicates the performance enhancement 

from different components of context-wise coreference 
network. More specifically, the fine-tuning BERT model 
improves the performance of precision and recall by 
32.93% and 34.29% (differences between DeepCoref and 
DeepCoref-entity). The Word2Vec-based network improves 
performance by 16.27% and 27.85% (differences between 
DeepCoref and DeepCoref-ctx). The comparison between 
DeepCoref-ctx and DeepCoref-entity indicates that contex-
tual semantics are more effective than entity semantics. The 
improvement of precision and recall reaches 16.66% and 
6.44% (differences between DeepCoref-ctx and DeepCoref-
entity), respectively. The comparison between DeepCoref 
and DeepCoref-LSI indicates the stronger contextual rep-
resentation from BERT than LSI, where the improvement 
reaches 29.85% and 33.44% (differences between DeepCoref 
and DeepCoref-LSI), respectively.

In summary, each component of our network improves 
the performance to varying degrees. Their combination can 
obtain a quite promising performance. In addition, the appli-
cation of fine-tuning BERT model significantly enhances 
performance.

5.4  Answering RQ4: data sensitivity

This section is to demonstrate the influence of different data 
size on coreference classification. Figure. 9 represents the 
relationship between performance and time consumption of 
DeepCoref when enlarging the size of the dataset. When the 
training set increases from 5% to 90%, the performance of 
DeepCoref rises sharply before 20% and has a small increase 
later. The variance of data at each point after 40% is also 
similar. We obtain the best performance at the last point 
where we use 90% data as training set. The inflection point 

Table 4  RQ2: The performance improvement on the coreference 
classification brought by clustering

Precision (%) Recall (%) F1 (%)

Classification 96.10 96.06 96.08
Clustering 98.52 98.53 98.53

Fig. 8  RQ3: The performance of DeepCoref and its variants. The 
cross is the mean value of 10-fold cross-validation
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occurs with 95.25% precision and 95.30% recall, when we 
use 60% data as training set. This indicates that DeepCoref 
is not very sensitive after the training set is greater than 60% 
(i.e., around 1100 in our experimental settings). Moreover, 
we can find that just using 20% data for training, the perfor-
mance is also greater than 92% on average. It demonstrates 
that DeepCoref can address the low-resource problem well. 
In addition, the time consumption increases approximatively 
linearly from 159.42s to 412.52s. Considering our experi-
mental environment, the time consumption of training the 
model is acceptable.

In summary, benefiting from large corpora pre-training 
and the fine-tuning technique, DeepCoref can reach a prom-
ising performance on a relatively small dataset. This alle-
viate the domain adaption problem such as low-resource 
problem to some extent.

6  Discussion

6.1  Parameter settings on baselines

The performances of baselines are affected by the value 
selection of similarity ratios. Here, we discuss the param-
eter determination process in our experiments. To achieve 
the best performance of these baselines, we conduct a set of 
experiments to find the sweet parameters. The best param-
eter settings are used in the comparison. Baselines are sim-
ilarity-based methods, which are sensitive to the value of 
the ratio, so the parameter we analyze is similarity ratio. 
We vary the values of similarity ratios for Word2Vec, LSI, 
and Levenstein, respectively, and evaluate their impact on 
the performance. We present the box-plot changing curve 
(each box includes 10 results from 10-fold cross-validation) 

of F1-Score for each method, when the ratio increases in 
[0, 1] by step 0.01 (for readability, the step in the figure is 
0.03). We also present the optimal value of the ratio for each 
round of 10-fold cross-validation of each method. The final 
similarity ratio of each method is computed by an average 
of 10 optimal values.

Figure 10 shows the F1-Score when the similarity ratio 
increases from 0 to 1 for each baseline. We can see that the 
ratio can influence the performance of these similarity-based 
methods significantly, and the optimal values are distinct for 
each method. Generally with the increase of similarity ratio, 
the F1-Score first rises and then declines for all methods. 
Nevertheless, this general trend exhibits a slight difference 
among these methods. For Word2Vec, the curve is steep, 
rising when the ratio is less than 0.85 and declining after 
that, which means that the optimal values of the ratio are 
stable around 0.85 for each round of 10-fold cross-valida-
tion. For LSI, the curve rises slowly before 0.5, then keeps 

Fig. 9  RQ4: The performance of DeepCoref by data augmentation. 
The dotted line is time consuming

Fig. 10  The boxplot changing curve of F1-Score with the similarity ratio increasing from 0 to 1 by step 0.03 for each method. Each box contains 
results of one 10-fold cross-validation
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steady between 0.5 and 0.7, and finally declines after 0.7. 
This means that the optimal values fluctuate in the interval 
(0.5, 0.7) for all rounds. For Levenstein, the cure rises dra-
matically before 0.25, then declines slowly between 0.25 
and 0.65, and declines dramatically after 0.65. The optimal 
values are around 0.25.

Table  5 shows the optimal similarity ratios of each 
method for each round of 10-fold cross-validation. For each 
fold, the optimal similarity ratios of Word2Vec and Lev-
enstein are the same values of 0.85 and 0.25, respectively, 
while the optimal ratio of LSI fluctuates slightly around 
0.67, which is consistent with changing curves in Fig. 10. 
The final ratio is computed by the average of these optimal 
values, where the ratios of Word2Vec, LSI and Levenstein 
are 0.85, 0.67 and 0.25, respectively. Hence, one should 
carefully tune the similarity ratios for each method, in order 
to achieve the best performance for a fair comparison.

6.2  Applicability

Resolving EC is usually a downstream task of entity extrac-
tion task in the pipeline of requirement analysis. In prac-
tice, entity extraction can rely on automated tools, and does 
not need much manual effort. The application scenario of 
DeepCoref is to resolve coreference on entities produced 
by these automated tools. There are several techniques for 
entity extraction such as general NLP tools [1, 22, 31] and 
domain-specific tools [42, 70]. When applying DeepCoref 
for detecting EC, one can firstly extract entities using tools 
mentioned above, then truncate contexts (see Sect. 3.1) 
and format the data to train the context-wise coreference 
network for coreference classification (see Sect. 3.2). You 
can also perform clustering and normalization to establish a 
non-coreferent entity dictionary. (see Sect. 3.3). Our method 
takes entities and related natural-language contextual text 
as input, and outputs coreferent clusters, and a normalized 

name for each coreferent cluster. We additionally list some 
key points when applying our method:

• Our method is evaluated on short texts, where contexts 
can contain enough semantic information. When apply-
ing to long texts, some contexts truncated by window 
may lack useful information which is far from entities. 
Tuning window size might alleviate the problem.

• Our data are from financial domain. One should annotate 
about one thousand samples for fine-tuning the whole 
model to tackle domain adaption.

• The entities in our data are ready-made. If someone 
wants to apply our method but has no entities, he/she 
can select an automated tool to conduct entity extraction 
firstly.

• When applying to other languages, BERT and word 
embeddings must be pre-trained on corpus of corre-
sponding languages.

7  Threats to validity

External validity: The external threats are related to the gen-
eralizability of the method. The experimental data are col-
lected from the industry community, labeled manually, and 
evaluated on finance domain. However, we have retrieved as 
many projects as possible, and most annotators are domain 
practitioners and experts. The evaluation results by projects 
show that our method is generalized across projects, which 
alleviates the threat to some extent. In addition, our method 
uses BERT pre-trained on large general corpus and the fine-
tuning technique, which alleviates the low-resource and gen-
eralizability problem. The Word2Vec we used is trained on 
Wikipedia dump, which might yield different results when 
training it on software requirement documents.

Internal validity: The internal threats relate to experimen-
tal errors and biases. Threats to internal validity may come 
from the entity extraction. The entities in our data are ready-
made and well-maintained by our industry partners, which 
has a slight impact on our results. Additionally, the quality 
of extracted entities has little impact on this task. Because 
the idea of our proposed method is to learn whether two enti-
ties are coreferent based on the similarity of the combined 
semantics of entities and corresponding contexts. While low-
quality entities will not impact our method to perform the 
semantic comparison, it will produce potentially semanti-
cally related but not properly extracted entities. Therefore, 
manual review on extracted entities is inevitable if  auto-
mated entity extraction tools cannot work well in practice. 

Construct validity: The construct threats relate to the 
suitability of evaluation metrics. We utilize precision and 
recall for coreference classification evaluation, where we 
use cosine similarity to measure whether two entities are 

Table 5  The optimal similarity ratios of each method for each round 
of 10-fold cross-validation

#Fold Word2Vec LSI Levenstein

#1 0.85 0.69 0.25
#2 0.85 0.68 0.25
#3 0.85 0.71 0.25
#4 0.85 0.68 0.25
#5 0.85 0.67 0.25
#6 0.85 0.59 0.25
#7 0.85 0.70 0.25
#8 0.85 0.59 0.25
#9 0.85 0.67 0.25
#10 0.85 0.67 0.25
Average 0.85 0.67 0.25
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coreferent. The threats might come from the selection of 
similarity ratio. To reduce that threat, we perform an experi-
ment on tuning ratios and use the average of optimal values 
as ratios (see Sect. 6.1). In addition, both predicted positive 
and negative labels are equally important in predictions, so 
we calculate the evaluation metrics for each label and take 
their unweighted mean as final results. As for clustering 
evaluation, we utilize six metrics including pairwise metrics 
and entropy-based metrics. These metrics measure cluster-
ing performance from different angles, which alleviates the 
threat.

8  Related work

Our work is related to previous studies that focused on (1) 
detection of inconsistency in requirements written in natural 
language; and (2) coreference resolution. We briefly review 
the recent works in each category.

8.1  Detection of inconsistency

The amount of research on inconsistency detection has 
increased significantly in the past years. Mezghani et al. [56] 
used unsupervised machine learning algorithm, K-Means, 
for a redundancy and inconsistency detection in the RE con-
text. They introduced a filtering method to eliminate “noisy” 
requirements and a pre-processing step based on the NLP 
technique and used PoS tagging and noun chunking to detect 
technical business terms. PBURC [5] is a pattern-based 
unsupervised requirements clustering framework (based on 
K-Means algorithm), which makes use of machine-learning 
methods for requirements validation. The method aimed to 
overcome data inconsistencies and effectively determine 
appropriate requirements clusters for the optimal definition 
of software development sprints. Traditional techniques such 
as bag-of-words (BOW), Term Frequency and Inverse Docu-
ment Frequency (TF-IDF) frequency matrix and n-gram lan-
guage modeling were firstly used on redundancy detection. 
Juergens et al. [33] found that clone detection, a technique 
widely applied to source code, is promising to assess redun-
dancy in an automated way. They used ConQAT to identify 
copy&paste operations in software requirements specifica-
tions. Falessi et al. [17] conjectured and assessed that NLP 
techniques identifying equivalent requirements perform 
on a given dataset according to both ability and the odds 
of making correct identification. Also, they proposed a set 
of seven principles for evaluating the performance of NLP 
techniques in identifying equivalent requirements. They used 
IR methods such as Latent Semantic Analysis. Rago et al. 
[65] introduced a novel method called ReqAligner that aids 
analysts to spot signs of duplication in use cases in an auto-
mated fashion. ReqAligner combines several text processing 

techniques, such as a use case classifier and a customized 
algorithm for sequence alignment.

Ambiguity is usually related to inconsistency. In the liter-
ature, many works have been proposed to tackle the problem 
of ambiguity in written requirements. Ferrari et al. [21] pre-
sented an NLP method to identify ambiguous terms between 
different domains and rank them by ambiguity score. The 
method is based on building domain-specific language mod-
els in each domain. They compared different word embed-
dings of one identical term from different domains to esti-
mate its potential ambiguity across the domains of interest. 
There are some works using special terms and expressions 
with different PoS or patterns [6, 18, 19, 23, 67, 72]. Other 
works use heuristics to tackle coordination ambiguities (i.e., 
ambiguities brought by “and” or “or” conjunctions) [7] and 
anaphoric ones (i.e., ambiguities brought by pronouns) [78].

Our work complements to the existing researches in two 
aspects:

• It is a method to resolving EC in RE. Detecting EC can 
improve the readability and understandability of require-
ments.

• It is a deep learning method, which is more powerful and 
generic.

8.2  Coreference resolution

Our work is inspired by CDCR, so we review representa-
tive works on CR in recent years. For WDCR, Lee et al. 
[41] introduced the first end-to-end coreference resolution 
model without using a syntactic parser or handengineered 
mention detector. The key idea is to directly consider all 
spans in a document as potential mentions and learn dis-
tributions over possible antecedents for each. Joshi et al. 
[32] fine-tuned BERT to coreference resolution, achieving 
the state-of-the-art performance. However, they considered 
there is still room for improvement in modeling document-
level context, conversations, and mention paraphrasing. As 
for CDCR, Lee et al. [40] introduced a novel coreference 
resolution system that models entities and events jointly by 
iteratively constructing clusters of entity and event mentions 
using linear regression to model cluster merge operations. 
The joint formulation allowed information from event coref-
erence to help entity coreference, and vice versa. Inspired 
by [40], Barhom et al. [2] proposed a neural architecture for 
cross-document coreference resolution, which represents an 
event (entity) mention using its lexical span, surrounding 
context, and relation to entity (event) mentions via predicate-
arguments structures.

This work draws on the ideas of CDCR entity methods, 
but at the same time takes into account the characteristics 
of EC in RE. We summarize three differences between EC 
in RE and EC in general NLP tasks below:
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• Coreferent entities in RE usually occur among multi-
word noun phrases, and most entities are technical terms 
and relatively independent. It is not necessary to detect 
pronoun coreferences or traverse all probable mentions, 
because its main aim is to reach a shared understanding 
on some basic concepts among multiple stakeholders.

• Coreferent entities in RE are scattered in various sections 
of the natural-language requirement, which implies that 
the EC detection in RE are more dependent on the con-
textual semantics.

• The EC in RE is domain-specific tasks, which implies 
that there are domain adaptation problems such as low-
resource problem. However, general EC tasks can obtain 
support from large general corpora or public knowledge 
bases.

9  Conclusion and future work

This paper resolves Entity Coreference in requirement engi-
neering. We propose a DEEP context-wise method for entity 
COREFerence detection, which we name DeepCoref. The 
first step is to truncate contexts around entities. Then, we 
construct a context-wise coreference network for coreference 
classification. It consists of a fine-tuning BERT model for 
context representation, a Word2Vec-based network for entity 
representation, and a multi-layer perceptron is followed to 
fuse and make a trade-off between two representations in 
order to obtain a better representation of the entity. Finally, 
we assign entities which are coreferent to one concept into 
one same cluster by clustering, and assign a normalized 
name to each coreferent cluster by normalization. We inves-
tigate the effectiveness of DeepCoref with 1853 samples on 
21 projects from the industry community. The experimental 
results of coreference classification show that our method 
significantly outperforms three baselines with average pre-
cision and recall of 96.10% and 96.06%, respectively. The 
clustering performance of DeepCoref is higher on six met-
rics compared with two baselines. In order to demonstrate 
the performance enhancement from different components of 
context-wise coreference network, we compare the perfor-
mance of DeepCoref and three variants as well.

 Type="SmallCaps">DeepCoref works better, mainly 
benefiting from its novel design of context-wise corefer-
ence network. The combined sentence-level context repre-
sentation and word-level entity representation can be trained 
jointly with other parameters, thus obtaining a better entity 
representation. In addition, we only need to annotate a small 
amount of data for fine-tuning, which obtains a promising 
result, because DeepCoref can benefit from fine-tuning tech-
nique and pre-trained models (i.e., BERT and word embed-
dings) trained on large general corpora. It alleviates the 
problem of insufficient annotated resource and the high cost 

of manual annotation as well. The results also confirm that 
our method could effectively detect entity coreference from 
natural-language requirements, thus can facilitate reaching a 
shared understanding on entities among multiple stakehold-
ers from different domains in an automated way.

In the future, we plan to add some event features into 
the entity representations based on what we have proposed 
in this work, because we observe that one entity is usually 
associated with a chain of events, such as CRUD (i.e., cre-
ate, read, update and delete). Therefore, event information 
has the potential to help distinguish entities more precisely.
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