
Vol.:(0123456789)1 3

Requirements Engineering (2022) 27:351–373
https://doi.org/10.1007/s00766-022-00374-8

ORIGINAL ARTICLE

Detecting coreferent entities in natural language requirements

Yawen Wang1,2 · Lin Shi1,2 · Mingyang Li1,2 · Qing Wang1,2,3,4 · Yun Yang5

Received: 18 December 2020 / Accepted: 21 January 2022 / Published online: 1 March 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Requirements are usually written in natural language and evolve continuously during the process of software development,
which involves a large number of stakeholders. Stakeholders with diverse backgrounds and skills might refer to the same
real-world entity with different linguistic expressions in the natural-language requirements, resulting in requirement incon-
sistency. We define this phenomenon as Entity Coreference (EC) in the Requirement Engineering (RE) area. It can lead to
misconception about technical terminologies, and harm the readability and long-term maintainability of the requirements.
In this paper, we propose a DEEP context-wise method for entity COREFerence detection, named DeepCoref. First, we
truncate corresponding contexts surrounding entities. Then, we construct a deep context-wise neural network for coreference
classification. The network consists of one fine-tuning BERT model for context representation, a Word2Vec-based network
for entity representation, and a multi-layer perceptron in the end to fuse and make a trade-off between two representations.
Finally, we cluster and normalize coreferent entities. We evaluate our method, respectively, on coreference classification and
clustering with 1853 industry data on 21 projects. The former evaluation shows that DeepCoref outperforms three baselines
with average precision and recall of 96.10% and 96.06%, respectively. The latter evaluation on six metrics shows that Deep-
Coref can cluster coreferent entities more accurately. We also conduct ablation experiments with three variants to demonstrate
the performance enhancement brought by different components of neural network designed for coreference classification.

Keywords Entity coreference · Requirements inconsistency · Deep learning · Requirement engineering

1 Introduction

In the stage of conception, requirement specifications are
specified in natural language with the flexibility to accom-
modate the arbitrary abstraction [30]. Most requirements
are written by different stakeholders with diverse back-
grounds and skills [9, 21, 45]. Writing requirements clearly
without inconsistency and ambiguity before passing to the
subsequent stages of the development is a challenging but
essential task [20, 56]. The inconsistency violates one of
the quality principles related to linguistic aspects of natural-
language requirements [16]. It might occur among require-
ment analysts and domain experts because of their special-
ized jargons, or stakeholders from different domains [21].

In practice, different linguistic expressions could be used
by different stakeholders to refer to the same real-world
entity in natural-language requirements, and we define
such phenomena as Entity Coreference (EC). More spe-
cifically, we present an example of EC in Fig. 1 for illus-
tration. Suppose we have three pieces of natural-language
requirement texts (R1, R2, and R3) and their related entities:

 * Lin Shi
 shilin@iscas.ac.cn

 Yawen Wang
 yawen2018@iscas.ac.cn

 Mingyang Li
 mingyang@itechs.iscas.ac.cn

 Qing Wang
 wq@iscas.ac.cn

 Yun Yang
 yyang@swin.edu.au

1 Laboratory for Internet Software Technologies, Institute
of Software, Chinese Academy of Sciences, Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China
3 State Key Laboratory of Computer Sciences, Institute

of Software, Chinese Academy of Sciences, Beijing, China
4 Science & Technology on Integrated Infomation System

Laboratory, Institute of Software, Chinese Academy
of Sciences, Beijing, China

5 School of Software and Electrical Engineering, Swinburne
University of Technology, Melbourne, Australia

http://orcid.org/0000-0003-2854-4889
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-022-00374-8&domain=pdf

352 Requirements Engineering (2022) 27:351–373

1 3

“industry-related term list” in R1, “finance vocabulary list”
in R2 and “finance word list” in R3. However, we can con-
clude the three entities refer to the same thing according
to their contexts. EC might lead to misconception on enti-
ties, thus impairing the readability and understandability of
requirements [60]. This work focuses on resolving EC in
Requirement Engineering (RE)1.

To tackle the problem of inconsistency or ambiguity in
natural-language requirements, researchers have proposed
many works literally. We classify these works into three
categories. Pattern-based methods use some special terms
and expressions of different Part-of-Speech (PoS) and other
patterns [6, 18, 19, 23, 67, 72] for inconsistency detection,
or heuristics to tackle coordination or anaphoric ambigui-
ties [7, 78]. Learning-based methods [5, 17, 56] use infor-
mation retrieval (IR) techniques such as Latent Semantic
Indexing (LSI) or unsupervised clustering algorithms such
as K-Means. Similarity-based methods include word embed-
dings [21] and syntactic methods (e.g., Jaccard [10] and
Levenstein [51]) by computing a similarity score between
entities. However, these methods cannot be directly utilized
in EC due to the following challenges:

• Multi-word entity In natural-language requirements,
most entities are noun phrases [1, 22] rather than a sin-
gle word. For example, all entities shown in Fig. 1 con-
sist of multiple words. On average, each entity contains
3.52 words based on observations on our industry data.
However, it is challenging to represent multi-word enti-
ties with word-level representation techniques. Take the
entities in Fig. 1 as an example, the expression of entity
E1 is quite different from the expressions of the other
two entities E2 and E3, that they only share one identi-
cal word ”list”. However, E1 refers to the same entity as
E2 and E3. If we simply use the word-level similarity
methods such as word embedding, incorrect EC will be

given that E2 and E3 are coreferent entities while E1 is a
different one.

• Missing contextual semantics Sentence-level contextual
semantic information can provide extra information for
resolving EC, which is ignored by existing works. In
most cases, we infer whether two entities are coreferent
based on their contexts, because coreferent entities usu-
ally have similar contexts. For example in Fig. 1, similar
contextual words such as “user” and “online help tool”
appear in all the three requirements, which indicates
three entities are coreferent. Therefore, add and how to
add contextual semantics into entity representations is
important as well.

• Insufficient annotated resources Domain expertise and
intensive manual effort are required when annotating
coreferent entities in requirements, resulting in insuffi-
cient annotated data for effective learning. In addition,
EC detection in RE is a domain-specific task. It cannot
directly benefit from large general corpora or public
knowledge bases like general coreference detection tasks.
How to use limited annotation data and benefit from pre-
trained models trained on large general corpora is another
challenge.

Based on the challenges addressed above, our previous work
[76] proposed a DEEP context-wise semantic method to
resolving entity COREFerence in natural-language require-
ments, which is named DeepCoref. It first performs Context
Truncation to truncate context for each entity and then con-
vert ⟨context, entity⟩ pairs to model input format. Then, it
performs Coreference Classification to infer whether two
entities are coreferent by constructing a context-wise coref-
erence network. The network consists of two parts. One is a
deep fine-tuning BERT context model for context represen-
tation, and the other is a Word2Vec-based entity network for
entity representation. Subsequently, we use a Multi-Layer
Perceptron (MLP) to fuse two representations. The input of
the network is requirement contextual text and related enti-
ties, and the output is a predicted label to infer whether two
entities are coreferent.

However, DeepCoref has one major limitation that it can
only resolve coreference between entity pairs, which seri-
ously affected its practicality in requirement analysis activi-
ties, such as establishing a non-coreferent entity dictionary.
Establishing and maintaining such a dictionary, which char-
acterizes the key functional objects of the software system, is
an effective mechanism to tackle issues triggered by require-
ment evolution. These issues include ambiguous or duplicate
features, lacking of visibility in requirement dependency,
poor scope and cost estimation of software projects [42].
The non-coreferent entity dictionary can also support new
feature identification [31], requirement change analysis [34],
and effort estimation based on requirement changes [35], etc.

Fig. 1 Examples of coreferent entities in natural-language require-
ments, which make the requirements difficult to understand

1 Note that entities in this research are ready-made, and entity extrac-
tion is out of the scope of this research.

353Requirements Engineering (2022) 27:351–373

1 3

To support requirement analysts addressing these issues, we
enhance DeepCoref by integrating two new components:

• Clustering is to cluster all coreferent entities based on
coreference relations of entity pairs, so that coreferent
entities are assigned into the same clusters and non-coref-
erent ones into different clusters.

• Normalization is to select one from all coreferent entities,
so that each cluster of coreferent entities can have one
normalized name.

Clustering can link all coreferent entity pairs together,
which help requirement analysts understand which entities
are coreferent to the same conception. Normalization can
assign a normalized name for coreferent entities, which help
requirement analysts reduce misconception caused by dif-
ferent expressions.

We investigate the effectiveness of DeepCoref with
data from our industry partner. The experimental results
of coreference classification show that our method outper-
forms three baselines, with average precision and recall
of 96.10% and 96.06%, respectively. The clustering per-
formance of DeepCoref are higher as well than two base-
lines on all the six clustering evaluation metrics. We also
conduct ablation experiments for network design of Deep-
Coref with three variants to demonstrate the performance
enhancement brought by different components in corefer-
ence classification.

The main contributions of this paper are as follows:

• We highlight the importance of detecting entity corefer-
ence in RE.

• We propose a deep context-wise coreference network
which combines contextual semantics for automatic
coreference classification, a method of clustering corefer-
ent entities, and a method of normalizing the expressions
of coreferent entities.

• From the perspective of coreference classification and
clustering, we conduct experimental evaluation on 1853
samples of 21 projects from the industry community with
promising results.

• Public-access of source code2 to facilitate the replication
of our study and its application in other contexts.

The rest of the paper is organized as follows. Section 2
describes the background. Section 3 presents the design of
our proposed method. Sections 4 and 5 show the experi-
mental setup and evaluation results, respectively. Section 6
provides a detailed discussion. Section 7 describes threats

to validity. Section 8 surveys related work. Finally, we sum-
marize the paper in Sect. 9.

2 Background

In this section, we introduce some key techniques related
to this research: fine-tuning BERT, word embeddings and
Coreference Resolution (CR). We include them here because
our work is based on these techniques.

2.1 Fine‑tuning BERT

BERT (Bidirectional Encoder Representations from Trans-
formers) [13] is a deep bidirectional Transformer encoder
[74] trained with the objective of masked language modeling
and the next-sentence prediction task, which proves effective
in various NLP tasks. It is constructed based on Transformer
architecture [74], which is proposed to use a stacked self-
attention encoder-decoder structure to replace conventional
LSTM [27] architecture. It also introduces multi-headed
attention to improve previous attention mechanisms, which
helps the overall model to focus on different positions and
solves the problem that the current word itself can dominate
other words [26, 74]. Radford et al. [64] introduce the con-
cepts of the Transformer architecture that can be fine-tuned.
They verify that large performance enhancement can be real-
ized by generative pre-training of a language model on a
diverse corpus of unlabeled text, followed by discriminative
fine-tuning on each specific task.

BERT framework has two steps: (1) pre-training, where
the model is trained on unlabeled data over different pre-
training tasks. (2) fine-tuning, where the BERT model is
first initialized with the pre-trained parameters, and all of the
parameters are fine-tuned using labeled data from the down-
stream tasks. BERT has two model sizes: BERTBASE (L=12,
H=768, A=12, Total Parameters=110 M) and BERTLARGE
(L=24, H=1024, A=16, Total Parameters=340 M), where
the number of layers (i.e., Transformer blocks) is denoted
as L, the hidden size as H, and the number of self-attention
heads as A.

BERT is designed to unambiguously represent both a sin-
gle sentence and a pair of sentences in one token sequence,
for handling a variety of downstream tasks. As for output,
the token representations are fed into an output layer for
token-level tasks, and the [CLS] representation is fed into an
output layer for classification. The pre-trained BERT can be
simply plugged by the task-specific inputs and outputs and
fine-tuned all the parameters end-to-end, which is relatively
inexpensive compared to pre-training.

2 https://github.com/MeloFancy/DeepCoref.

https://github.com/MeloFancy/DeepCoref

354 Requirements Engineering (2022) 27:351–373

1 3

2.2 Word embeddings

Embedding (also known as distributed representation [59,
73]) is a technique for learning vector representations of
entities such as words, sentences and images in such a way
that similar entities have vectors close to each other [58,
59]. A typical embedding technique is word embedding,
which represents words as fixed-length vectors so that simi-
lar words are close to each other in the vector space [58, 59,
63]. Comparing with Levenstein [51], here “similar” means
semantic similarity instead of string similarity. Word embed-
dings are based on the distributional hypothesis of Harris
[25]. We can estimate distances and identify semantic rela-
tions from their vectors.

Word embedding is usually implemented by a model such
as Continuous Bag-of-Words (CBOW) and Skip-Gram [58].
These models build a neural network that captures the rela-
tions between a word and its contextual words. The vector
representations of words, as parameters of the network, are
trained with a text corpus [59]. word2vec [58] introduced
by Mikolov et al. is the most typical method. Another word
embedding model is GloVe [63], which is an unsupervised
learning algorithm for obtaining vector representations for
words. Training is performed on aggregated global word-
word co-occurrence statistics from a corpus, and the result-
ing representations showcase interesting linear substructures
of the word vector space.

Information captured from corpora substantially increases
the value of word embeddings to both unsupervised and
semi-supervised Natural Language Processing (NLP) tasks.
For example, good representations of both the target word
and the given context are helpful to various tasks, includ-
ing word sense disambiguation [8], coreference resolution
and named entity recognition (NER) [11, 55, 73]. The con-
text representations used in such tasks are commonly just
a simple collection of the individual embeddings of the

neighboring words in a window around the target word, or
a (sometimes weighted) average of these embeddings [54].
Likewise, a sentence (i.e., a sequence of words) can also
be embedded as a vector [62]. A simple way of sentence
embedding is, for example, to consider it as a bag of words
and add up all its word vectors [39].

2.3 Preliminaries on coreference resolution

Coreference is defined as occurring when one or more
expressions in a document refer to one entity. CR is a clas-
sical NLP task of finding all expressions that are coreferent
with any of the entities found in a given text [2, 4, 14, 41].
In CR, an entity refers to an object or set of objects in the
world, while a mention is the textual reference to an entity
[14].

There are two types of tasks in CR [2]: (1) resolving
coreference of entities or events (2) whether co-referring
mentions occur within a single document (WD: within-
document) or across a document collection (CD: cross-doc-
ument). Compared to entity CR, event coreference is con-
sidered to be a more difficult task, mostly due to the more
complex structure of event mentions [2, 47]. Entity men-
tions are mostly noun phrases, while event mentions may
consist of a verbal predicate (acquire) or a nominalization
(acquisition), where these are attached to arguments, includ-
ing event participants and spatio-temporal information [2].
WDCR methods provide techniques for the identification of
mentions in one document that refer to the same underlying
entity/event, while CDCR methods provide techniques for
the identification of mentions in different documents [4].
This work is most inspired by the CDCR entity methods,
but at the same time, it is revised for tackling the particu-
larity of EC in the context of RE. We also list some differ-
ences between EC in RE and EC in general NLP contexts
in Sect. 8.2.

Fig. 2 The overview of DeepCoref

355Requirements Engineering (2022) 27:351–373

1 3

3 Approach

To address the challenges mentioned in Sect. 1, we propose
a method named DeepCoref for resolving EC detection. Fig-
ure 2 presents the overview of DeepCoref. Given a set of
requirement texts written in natural language and its related
entities, we firstly truncate their corresponding contexts
(see Sect. 3.1). Then, we build a context-wise coreference
network (see Sect. 3.2) for coreference classification. The
network can predict whether a pair of entities are semanti-
cally equivalent, and the output is the predicted label (1 for
coreference and 0 for non-coreference). Finally, we cluster
and normalize all coreferent entities (see Sect. 3.3) accord-
ing to the predicted results among entity pairs.

3.1 Context truncation

Since entity extraction has been widely developed by many
NLP researches [1, 22, 31, 42, 70], DeepCoref does not
focus on entity extraction, and utilizes entities that have
already been extracted as the basic data. In our study, enti-
ties are ready-made and provided from our industry partner.

In this study, the context refers to the neighboring words
in a window around a certain entity. This step is to truncate
requirement text centered on an entity with a window size
as the context related to the entity. The fixed window size
can also avoid too long texts and align text sequences of
different length. Given an entity and its related requirement
text, we first locate the entity and then truncate text centered
on the entity according to the window size. Entities might
occur in different positions of one sentence (i.e., near the
beginning, near the middle and near the end). So we tackle
different cases according to the rules below. We assume win-
dow size is M, the length of entity denoted as N, the length
of text sequence before entity denoted as lpre , the length of
text sequence after entity denoted as lsub:

• If lpre ⩾ ⌈M−N

2
⌉ and lsub ⩾ ⌈M−N

2
⌉ , both previous and sub-

sequent text sequences are truncated by length ⌈M−N

2
⌉.

• If lpre ⩾ ⌈M−N

2
⌉ and lsub < ⌈M−N

2
⌉ , the previous text

sequence is truncated by length min(lpre,M − N − lsub) ,
and all subsequent words are reserved, where min(⋅) is to
take the minimum.

• If lpre < ⌈M−N

2
⌉ , all previous words are reserved, and

the subsequent text sequence is truncated by length
min(lsub,M − N − lpre) , where min(⋅) is to take the mini-
mum.

The final extracted context is a concatenation of truncated
previous sequence (denoted as pre), the entity itself (denoted
as entity) and truncated subsequent sequence (denoted as
sub): [pre ⊕ entity ⊕ sub] . Finally, we use a special

symbol [PAD] padding to the length of window size. In this
work, we set window size M = 128 .

Figure 3 demonstrates an example of context extraction
for each case. By context truncation, we obtain the entity and
its related context (i.e., ⟨context, entity⟩). Finally, we perform
data transformation to format two ⟨context, entity⟩ pairs into
a context pair (i.e., ⟨context1 , context2⟩ , and a entity pair (i.e.,
⟨entity1, entity2⟩).

3.2 Coreference classification

We build a context-wise coreference network for coreference
classification between two entities. The architecture of the
network are shown in Fig. 4. The context-wise coreference
network takes a pair of entities and their related contexts as
input and predicts whether two entities are coreferent. The
network consists of two parts. One is a fine-tuning BERT
model for learning context representations, and the other is a
Word2Vec-based network for learning entity representations.
We concatenate two representations for better combining
semantic information about the entire contextual sentences
and individual words. Finally, we use an MLP to fuse two
representations, and a softmax layer to infer the predicted
labels.

3.2.1 Fine‑tuning BERT context model

A powerful context representation is helpful for measuring
context-wise similarity [28]. In many NLP tasks (e.g., entity
disambiguation and entity/event coreference resolution), the
context representations are commonly a collection of the
individual embedding of contextual words (e.g., a weighted
average of these embeddings). Such methods do not include
any mechanism for optimizing the representation of the
entire contextual sentences [54].

To obtain a good context representation, we use BERT
which is a fine-tuning based and bidirectional pre-training
representation model [13]. It takes a context pair (i.e.,
⟨context1 , context2⟩) as input, and produces a context vector
representation. Due to the contexts are usually short text, we
use the model BERTBASE with a relatively small model size,

Fig. 3 An example of context truncation. The bold words (e.g., prod-
uct manager) are entity words. The red dotted rectangle represents the
window. Here window size M = 6 , and the length of entity N = 2

356 Requirements Engineering (2022) 27:351–373

1 3

which has 12 layers, 768 hidden dimensions and 12 attention
heads. In BERT, the input can be a pair of sentences. Two
contexts are concatenated and fed to the model as a sequence
pair together with special start and separator tokens: ([CLS]
context1 [SEP] context2 [SEP]). The transformer encoder pro-
duces a context vector representation (denoted as vctx) of the
input pair, which is the output of the last hidden layer at the
special pooling token [CLS] [13, 46].

3.2.2 Word2Vec‑based entity network

To capture the word-level information of entities, we also
build a Word2Vec-based network to learn an entity repre-
sentation using word embeddings [59]. It takes an entity pair
(i.e., ⟨entity1, entity2⟩) as input, and produces an entity vector
representation. We utilize the 300 dimensional word embed-
dings which are pre-trained on a 1.3G Wikipedia corpus3
with 223M tokens and 2129K vocabularies. It is trained with
three types of features (word features, n-gram features and
character features) using the skip-gram model with negative
sampling [44].

For each entity in the pair ⟨entity1, entity2⟩ , we first seg-
ment words and obtain the word embedding of each word.
Then, we use the average of embeddings of all words in one
entity to represent the embedding of this entity (denoted as
e). So the entity pair can be represented as a vector (denoted
as p) which is concatenated by the embeddings of two enti-
ties (p = [e1 ⊕ e2]). Since the dimension of word embed-
dings is 300, the dimension of e is 300 and the dimension
of p is 600. After that, p is fed into a fully connected layer
to produce an entity vector representation (denoted as vt).

3.2.3 Representation fusion

The output of two parts of context-wise coreference net-
work: vctx is a representation of context pair, and vt is a repre-
sentation of entity pair. We need to fuse two representations
to obtain semantic information in both sentence level and
word level. The output is the label which represents whether
two entities are coreferent.

Following previous practice of representation fusion [2],
we concatenate vctx and vt (vf = [vctx ⊕ vt]). Then, we input
vf into MLP. MLP has three layers:

• A fully connected layer, which is to fuse vctx and vt into
one vector by w⊤vf , where w is a learned parameter vec-
tor. w can be trained to make a trade-off between vctx and
vt.

• A dropout layer, which is used to avoid over-fitting [71]
by randomly masking some neuron cells.

• An output layer, which transforms the vector into a
2-dimensional vector [s1, s2] , representing two labels
(coreferent or non-coreferent).

The output of MLP [s1, s2] represents the scores of the two
classes, respectively, where si ∈ R . Finally, we perform soft-
max on this 2-dimensional vector, which can be specified as:

Then [s1, s2] can be normalized to probabilities [p, 1 − p] ,
where p ∈ [0, 1] . The network can infer the predicted label
based on these probabilities.

(1)Softmax(si) =
esi

∑2

j=1
esj

...

...

...

E[cls] E1 En E[sep] E[sep]EmE1

[CLS] Tok 1 Tok N Tok MTok 1[SEP]

... ...

... ...

Context1 Context2

Tok 1 Tok N Tok MTok 1
... ...

Entity1 Entity2

Word
Embedding

Word
Embedding

Word
Embedding

Word
Embedding

Word Vector

...

...

...

...

Average Average

...

Concat

MLP

1-PP Softmax

Concat

[SEP]

Entity Vector
Context Vector

Word Vector Word VectorWord Vector

Label

3.2.1 Fine-tuning BERT Context Model

3.2.3 Representation Fusion

3.2.2 Word2vec-based Entity Network

Fig. 4 The architecture of context-wise coreference network

3 https:// dumps. wikim edia. org.

https://dumps.wikimedia.org.

357Requirements Engineering (2022) 27:351–373

1 3

3.2.4 Training details and implementation

Training details: Since the task is a classification problem,
we use cross-entropy as the loss function, which is speci-
fied as:

where p(x) and q(x) are the probability distribution of pre-
dicted label and ground-truth label, respectively.

The design of the context-wise coreference network
makes all parameters jointly fine-tuned on a specific task
(i.e., coreference classification), which can benefit from
large corpora pre-training in a relatively inexpensive way.
It also alleviates insufficient annotated resource problem to
some extent. Parameters in BERT are fine-tuned to obtain a
better context representation according with specific tasks
and data. Parameters in Word2Vec-based network are trained
to obtain a better entity representation based on pre-trained
word embeddings. Parameters in MLP are trained to better
fuse both representations, and make a trade-off between two
representations to reach a more accurate classification result.

Implementation: We implement context-wise coreference
network using Transformers4 [77] which is an open-source
library for natural language understanding and natural lan-
guage generation with over 32+ pre-trained models built
on Pytorch5.

3.3 Clustering and normalization

Given a pair of entities and their corresponding contexts,
we can use our trained context-wise coreference network
to predict whether two entities are coreferent. Based on the
coreference relations of all entity pairs, we can establish a
non-coreferent entity dictionary by two steps: clustering and
normalization.

(2)Loss =
∑

x

p(x) ⋅ log(
1

q(x)
)

3.3.1 Clustering

In this step, we cluster all the entities that are coreferent to
the same concept into one cluster. Thus, different clusters
will indicate different concepts with all their coreferent enti-
ties. We define EC in RE has two properties: Symmetry and
Transitivity. Let E be the entity set, then

• Symmetry: For ei, ej ∈ E , if ei is coreferent to ej , then ej
is coreferent to ei.

• Transitivity: For ei, ej, ek ∈ E , if ei is coreferent to ej , and
ej is coreferent to ek , then ei is coreferent to ek.

Ideally, each entity can be assigned into some cluster based
on predicted results of entity pairs following these two prop-
erties. However, one challenge is that there might be con-
flicts among predicted results of entity pairs. For example,

4 https:// github. com/ huggi ngface/ trans forme rs.
5 https:// pytor ch. org.

https://github.com/huggingface/transformers.
https://pytorch.org.

358 Requirements Engineering (2022) 27:351–373

1 3

if entity A is predicted coreferent to entity B, and entity B
is predicted coreferent to entity C, then entity A should be
predicted coreferent to entity C, and three entities should be
assigned into one cluster. However, there exists one situation
that DeepCoref wrongly predicts entity A and entity C as
non-coreferent. Such conflicts are caused by misclassifica-
tion in predicted results. Therefore, we construct a clustering
algorithm to cluster all entities based on the predicted results
of entity pairs and resolve conflicts simultaneously.

Concretely, we build a graph, where we treat all entities as
nodes, and coreference relations between entities as edges.
We take the probability of two entities being predicted coref-
erent by coreference network, as the weights of edges. Each
edge can be denoted as ⟨ei, ej, p⟩ , where ei and ej are entities
(nodes), and p (p ∈ [0, 1]) indicates the probability of entity
ei and entity ej being coreferent. To avoid the conflicts, we
first remove edges whose weights p are less than a ratio r
(line 2). The ratio r is an empirical value, which is set as 0.7
in this work. It indicates that only two entities whose prob-
ability of being coreferent is over 0.7 would be assigned into
one cluster, because the lower predicted confidence might
lead to conflicts. Then, we traverse all edges (line 3-26). If
neither ei and ej have been assigned a cluster id, we assign
a new one to them (line 4-7). If one of ei and ej has been
assigned a cluster id, we assign this id to the one without
an id (line 8-13). When both ei and ej have been assigned
a cluster id, if they belong to different clusters, we need to
merge the cluster with the higher id into the cluster with the
lower id (line 14-25). If they belong to the same cluster, we
skip it. Finally, we assign each entity, which is not assigned a
cluster id after traversal, a new cluster id (line 27-32). More
details can be seen in Algorithm 1.

3.3.2 Normalization

After clustering, we normalize the entities by selecting one
of coreferent entities belonging to the same cluster. Thus,
all coreferent entities in the same cluster are normalized
into one name. More specifically, for each cluster, we apply
TextRank algorithm [57] to construct a weighted word graph
(denoted as G = (V ,E)) based on the word co-occurrence
relations in the contextual texts of each cluster. The nodes
V in the graph represents the words in the context, and the
edges E in the graph represents the co-occurrence relations
between word Vi and its neighboring word Vj . The TextRank
score of node Vi is specified as:

where In(Vi) is the node set that points to the node Vi , and
Out(Vj) is the set of nodes pointed to by the node Vj . | ⋅ | is
the number of the nodes. d is the damping coefficient, and

(3)S(Vi) = (1 − d) + d ∗
∑

Vj∈In(Vi)

1

|Out(Vj)|
S(Vj)

the value 0.85 is taken generally. The bigger score represents
the more “importance” of the vertex within the graph. Then
for each coreferent entity in the same cluster, we perform
word segmentation, and calculate the TextRank score of
each word. We treat the average score as the score of the
whole entity, and select the entity with the highest score as
the normalized entity.

4 Experiment design

4.1 Research questions

Our evaluation addresses the following four research
questions.

RQ1 (Coreference classification) How effective is the
coreference classification of DeepCoref compared with
existing techniques? To investigate the effectiveness of
coreference classification of our method, we conduct
10-fold cross-validation using data from our industry part-
ner. We compare the performances of three baselines (see
Sect. 4.3.1). These methods include syntactic or semantic
similarity measures to detect coreference on word level or
sentence level. We compare these methods to demonstrate
the advantage of combining entity and context represen-
tations. Besides, we also present statistical results by the
project to examine the stability and generalizability across
different projects.

RQ2 (Clustering and normalization) How effective is
the clustering based on the predicted results of entity pairs
derived from coreference classification? In RQ2, we inves-
tigate the performance of clustering from three perspectives.

• Clustering evaluation: To verify the impact of different
coreference techniques (i.e., Word2Vec, LSI and Lev-
enstein) on the clustering performance, we perform the
algorithm introduced in Sect. 3.3.1 on coreferent entity
pairs obtained by DeepCoref and three baseline coref-
erence techniques, and compare their clustering perfor-
mance. To demonstrate the effectiveness of our proposed
clustering method, we compare the performance of Deep-
Coref with two commonly used clustering algorithms
(see Sect. 4.3.2). We use six metrics to evaluate the clus-
tering performance by comparing the ground-truth and
predicted cluster labels.

• Example analysis To present the clustering results more
intuitively, we give network graphs to illustrate the dif-
ferences of clusters among DeepCoref and two cluster-
ing baselines. In addition, we present the examples of
coreferent/non-coreferent entities of clusters in network
graphs.

359Requirements Engineering (2022) 27:351–373

1 3

• Classification improvement To verify the effectiveness
of our proposed clustering method on resolving con-
flicts caused by misclassification, we also present the
performance improvement on coreference classification
brought by clustering.

RQ3 (Ablation experiment) How effectively does each
component of context-wise coreference network facilitate
coreference classification? To examine the performance
enhancement introduced by context representations and
entity representations, respectively, we construct three vari-
ants (see Sect. 4.4): DeepCoref-ctx, DeepCoref-entity and
DeepCoref-LSI. We conduct 10-fold cross-validation on
DeepCoref and three variants, respectively, to demonstrate
the effectiveness for combining two representations.

RQ4 (Data sensitivity) To what degree does data size
influence coreference classification results? In RQ4, we
conduct an experiment by increasingly enlarging the size
of training data to examine the sensitivity between perfor-
mance enhancement and data augmentation. The amount
of data verifies whether fine-tuning methods can alleviate
low-resource problem. We also give the time consumption
with the increase of data.

4.2 Data preparation

Our experimental data are collected from the repositories
of China Merchants Bank (CMB)6. We collaborate with the
project management department of CMB and retrieve 21
projects from its repository, and each project has a set of
requirement texts with corresponding entities that occurred
in that text. The total number of text-entity pairs is 1949. The
entities are recognized by requirement engineers with the
support of automated tools, audited by project management
department and well-maintained through the requirement
evolution. We prepare data in the following steps: Pre-pro-
cessing, Sampling and Ground-truth Labeling.

4.2.1 Pre‑processing

For each entity and its related requirement text, we filter
noisy tokens such as URL, HTML tags and SQL statements
with Ekphrasis7 [3] which is a collection of light-weight
text processing tools. These tokens are produced by their
management system but not removed when dumped from
the system. Then, we filter some template words (e.g., “I
would like to”) which cannot contribute to the result but
introduce noise, especially for contextual semantic similar-
ity. As the BERT language model has its own vocabulary

and pre-processing steps, we do not perform other pre-pro-
cessing to deal with punctuations and specific tokens.

4.2.2 Sampling

After pre-processing, we truncate the context for each
entity, which is demonstrated in Sect. 3.1. We obtain 1949
⟨context, entity⟩ (denoted as ctx-entity pair) pairs in total
across all projects. Entities from different projects are defi-
nitely different no matter how similar their semantics are,
so we sample two ctx-entity (i.e., ⟨ctx-entity1 , ctx-entity2⟩)
from the same project in a combination way. The combina-
tion step is to build relations among ⟨context, entity⟩ pairs for
ground-truth labeling.

4.2.3 Ground‑truth labeling

These requirements and entities are domain-specific, so it is
challenging for data labeling. To guarantee the accuracy of
the labeling results, the labeling process follows three steps:

• The project management department of CMB assigns
samples (i.e., ⟨ctx-entity1 , ctx-entity2⟩ pairs) as well as
original requirement texts for reference to requirement
engineers according to the project team so that each
annotator can label the samples belonging to his/her own
products.

• The labeling results withdrawn from each project team
are reviewed by the project management department.

• As for samples which are annotated to different labels,
two teams would discuss and decide through voting. Only
those samples where both teams make a full agreement
can be included in our dataset.

In addition, the labeling process strictly follows the two
properties (symmetry and transitivity) of coreference rela-
tion to avoid inconsistency.

Finally, we totally collect 5,736 labeled data, and the
agreement between the labeling results from project team
and the results reviewed by project management team takes
up 5,083 (88.62%). The Cohen’s Kappa reaches 0.77. After
discussion and voting, common consensus is reached for
every entity pair. The two classes are extremely imbalanced
(i.e., the majority of the samples are non-coreferent) after
labeling. We use under-sampling technique to balance two
classes. Finally, we obtain 1853 labeled samples (⟨ctx-entity1 ,
ctx-entity2, label⟩). The positive labels (897, 48.41%) mean
ctx-entity1 and ctx-entity2 are coreferent, negative labels (956,
51.59%) for non-coreference. The total number of entities in
our dataset is 639. These entities form 355 clusters, and each
cluster contains entities which are coreferent to the same
concept. This indicates that there exists many small clusters, 6 It is one of the world’s top five hundred commercial banks.

7 https:// github. com/ cbazi otis/ ekphr asis.

https://github.com/cbaziotis/ekphrasis.

360 Requirements Engineering (2022) 27:351–373

1 3

even some clusters only contain one single entity (i.e., no
other coreferent entities).

4.3 Baselines

To further demonstrate the advantages of DeepCoref, we
compare it with three commonly used techniques for coref-
erence classification, and two commonly used methods for
clustering.

4.3.1 Baselines for coreference classification

Word2Vec: Ferrari et al. [21] present a method based on
word embeddings to support the identification of potentially
ambiguous terms in the context of requirements elicitation
interviews and group meetings. The “terms” in their context
is still word-level, or the word itself is a phrase processed by
word segment or text chunking. Word embedding provides
a good semantic representation on word level. However,
in our work, entities are not just single words but multiple
words. We use an average of word embeddings to represent
an entity, and then compute a cosine similarity score for
coreference detection.

LSI: Falessi et al. [17] use LSI to identify equivalent
requirements after comparing several NLP techniques on
a given dataset. It is an IR-based semantic sentence-level
method for representing a set of documents as vectors in
a common vector space. LSI has been employed in a wide
range of software engineering activities such as categoriz-
ing source code files [49], detecting high-level conceptual
code clones [52], and recovering traceability links between
documentation and source code [53], which is considered
to be able to resolve the polysemy problem as well [12, 48,
75]. We build an LSI model to demonstrate its capability for
context representations.

Levenstein: It is a syntactic similarity measure by cal-
culating a score for a given pair of entities by finding the
best sequence of edit operations (i.e., deletion, insertion and
substitution) to convert one entity into the other [1, 51]. We
use the implementation in library Distance8.

4.3.2 Baselines for clustering

K-Means: It is a commonly used clustering algorithm. To
compare with our proposed clustering algorithm, we vector-
ize entities following the idea of DeepCoref. Concretely, we
first encode each entity with word embeddings, and encode
corresponding contexts with BERT. Then, we concatenate
the two vectors to represent the entities. Finally, we run
K-Means on these vectors to assign all entities into clusters.

DBSCAN [15]: It is a density-based algorithm for dis-
covering clusters of arbitrary shape. Similarly, we encode
entities with word embeddings and contexts with BERT,
and then concatenate the two vectors to represent entities.
Finally, we run DBSCAN to cluster all entities.

We implement the two clustering algorithm with the
library scikit-learn9, and apply the optimal hyper-parameters
after tuning for the best performance.

4.4 Experimental setup

For hyper-parameter settings, the learning rate is set 10−5 .
The optimizer is Adam [36] algorithm. We use the mini-
batch technique [43] for speeding up the training process
with batch size 8. The drop rate is 0.1, which means 10% of
neuron cells will be randomly masked to avoid over-fitting.
These hyper-parameter are tuned carefully for best perfor-
mance, and keep unchanged across all experiments.

We conduct 10-fold cross-validation [37] on the data-
set collected from CMB in RQ1 and RQ3. We randomly
divide our dataset into ten parts. We use nine of those parts
for training and reserve one part for testing. We repeat this
procedure 10 times each time reserving a different part for
testing. All the experiments are conducted based on the same
data folds to avoid the impact of different data partitions. In
RQ2, for each coreference technique, we keep the predicted
results of each fold, then we can obtain the predicted results
of the whole dataset by merging 10-fold results. After that,
we construct predicted clusters of each coreference tech-
nique by performing Algorithm 1. For clustering baselines,
We apply K-Means and DBSCAN to the combined vector
representations of entities and contexts to obtain predicted
clusters. In RQ4, we randomly split data into the training
set (90%) and testing set (10%), and keep the testing set
unchanged. Then we enlarge the size of training set, and
evaluate on the fixed testing set.

RQ1 (Coreference classification): RQ1 is to question the
effectiveness of coreference classification of DeepCoref
comparing with existing techniques. In this experiment, we
compare the performance of DeepCoref with three methods
(Word2Vec, LSI, Levenstein distance). Word2Vec uses an
average of word embeddings to represent an entity, which
is to investigate the performance of entity representation
with word embeddings. LSI is built on the concatenation
of both context and entity to investigate the performance of
the combination of context and entity representation with
LSI. Levenstein is used to measure the distance between
entities to investigate the performance of simple syntactic
methods. The output of Levenstein is a similarity score. The
outputs of Word2Vec and LSI are vector representations, and

8 https:// github. com/ doukr emt/ dista nce. 9 https:// scikit- learn. org.

https://github.com/doukremt/distance.
https://scikit-learn.org.

361Requirements Engineering (2022) 27:351–373

1 3

subsequently, we infer the predicted label by computing sim-
ilarity score via cosine similarity [24]. So we need a similar-
ity ratio to decide whether two entities are coreferent, which
should be tuned carefully. We set the ratio of Word2Vec,
LSI and Levenstein as 0.85, 0.67 and 0.25, respectively (see
details for ratio selection in Sect. 6.1). In addition, we give
statistical results by the project to examine the stability and
generalizability across different projects.

RQ2 (Clustering and normalization): RQ2 is to question
the effectiveness of clustering of DeepCoref.

• Clustering evaluation: We perform Algorithm 1 on each
coreference technique (i.e., Word2Vec, LSI and Lev-
enstein), and use six metrics (see Sect. 4.5) to evaluate
the performance of clustering. Note that in order to per-
form Algorithm 1 on Word2Vec, LSI and Levenstein,
we simply treat the predicted labels as the probability
of two entities being predicted coreferent (i.e., label 1
is 100%, and label 0 is 0%). We also compare the per-
formance of DeepCoref and two clustering baselines
(i.e., K-Means and DBSCAN) on six metrics. More
specifically, we encode entities with word embeddings
and corresponding contexts with BERT, and concatenate
them as vector representations of entities. Then we per-
form K-Means and DBSCAN on these vectors to cluster
entities.

• Example analysis: For a more intuitive illustration, we
also present network graphs for clusters of the ground-
truth, DeepCoref and two clustering baselines, respec-
tively. For clustering results obtained by each method,
we plot the clusters with network graphs, where nodes
denote entities. The entities (nodes) belonging to the
same cluster are gathered together. We use different color
to distinguish different clusters according to the cluster
labels in the ground-truth. The entities with the same
color belongs to the same cluster in the ground-truth.
We only color top eight clusters for the ground-truth and
each method, and other relatively small clusters are all
painted grey, because we totally have 355 clusters, and
adding more clusters with few entities in the graph would
reduce clarity. In addition, we present the examples of
coreferent/non-coreferent entities according to clusters
in the network graph.

• Classification improvement: To investigate the effec-
tiveness of our proposed clustering method on resolv-
ing conflicts caused by misclassification, we retrieve the
coreference classification results of entity pairs based on
the clustering results, and compare with the ground-truth
labels.

RQ3 (Ablation experiment): RQ3 is to question the contribu-
tion of each component of DeepCoref to the performance
enhancement of coreference classification. We demonstrate

the performance enhancement introduced by each compo-
nent of context-wise coreference network by constructing
DeepCoref -ctx and DeepCoref -entity. DeepCoref-ctx only
contains the fine-tuning BERT model for context repre-
sentations without the Word2Vec-based network for entity
representations, and DeepCoref-entity is totally opposite
to DeepCoref-ctx only with Word2Vec-based network but
without BERT model. In addition, we build DeepCoref -LSI,
which is a variant of DeepCoref by replacing the BERT
with LSI to produce context vectors, and other parts remain
unchanged. DeepCoref-LSI is to demonstrate the advantage
of fine-tuning BERT over IR-based technique for computing
context representation. In this experiment, we only replace
each component, and keep all hyper-parameter settings the
same as RQ1.

RQ4 (Data sensitivity): RQ4 is to question the influence
of data size on the performance of coreference classification.
We conduct an experiment by increasingly enlarging the size
of training data to examine the sensitivity between perfor-
mance enhancement and data augmentation. We present
the time consumption with the increase of data as well. We
first randomly split all data into two parts (90% as training
set, 10% as testing set), and keep the testing set unchanged
across all experiments. Then, we enlarge the size of training
set from 5% to 90%, where we use all training data when
the ratio reaches 90%. For each ratio, we repeat the experi-
ment for five times, and use a boxplot to show the evaluation
metrics, and take the average time of five experiments as
consuming time.

The experimental environment is a desktop computer
equipped with a NVIDIA 1060 GPU, Intel Core i7 CPU,
16GB RAM, running on Ubuntu OS.

4.5 Evaluation metrics

We use commonly used metrics such as precision, recall and
F1-Score [66], to evaluate the performance of coreference
classification. We mentioned that we collect and annotate
data in cooperation with CMB (see Sect. 4.2). Given the
ground-truth label and predicted label from DeepCoref, we
calculate metrics for each class and take their unweighted
mean as final results. We compute the metrics of all testing
data for each round of 10-fold cross-validation to measure
the performance. As for the performance by the project in
RQ1, we compute the metrics for each project. In addition,
some baseline methods need to measure the similarity to
decide whether two entities are coreferent, so we use cosine
similarity [24] to compute the distance between two vector
representations.

Precision refers to the ratio of the number of correct pre-
dictions of positive labels to the total number of predictions
of positive labels.

362 Requirements Engineering (2022) 27:351–373

1 3

Recall refers to the ratio of the number of correct predic-
tions of positive labels to the total number of positive labels.

F1-score is the harmonic mean of precision and recall.
Cosine similarity computes similarity as the normalized

dot product of X and Y:

where X and Y are two vectors.
As for RQ2, given the ground-truth clusters, many met-

rics have been proposed in the literature to evaluate the
clustering performance. Following the previous work [29],
we select the metrics including Adjusted Rand Index (ARI)
[38], Normalized Mutual Information (NMI) [61], homoge-
neity (HOM) [68, 69], completeness (COM) [68], V-meas-
ure (V-M) [68], and Fowlkes-Mallows Index (FMI) [50].
Higher value indicates better clustering performance for all
six metrics. For clarity, we take all entities in our dataset as a
fixed list, and we denote T as the ground-truth cluster labels,
and P as the predicted cluster labels.

Adjusted rand index (ARI) takes values in [−1 , 1], reflect-
ing the degree of overlap between the two clusters. It is
improved based on Rand Index (RI). The raw RI is computed
by RI = a+b

(

n

2
)

 , where a is the number of pairs that are assigned

in the same cluster in T and also the same cluster in P, and
b is the number of pairs that are assigned in different clusters
both in T and P. (n

2
) is the total number of unordered pairs

in a set of n entities. The raw RI score is then “adjusted for
chance” into the ARI score using the following scheme:

where E(RI) is the expected value of RI. The ARI is thus
ensured to have a value close to 0.0 for random labeling
independently of the number of clusters and samples.

Normalized mutual information (NMI) is a normali-
zation of the Mutual Information (MI) score to scale the
results between 0 (no mutual information) and 1 (per-
fect correlation). It interpret the cluster performance
information-theoretically.

where H(T) i s t he en t ropy of set T , i . e . ,
H(T) = −

∑�T�
i=1

p(i)log(p(i)) and p(i) = Ti

N
 is the probability

that an object picked at random falls into class Ti . The
MI(T ,P) is the mutual information between T and P:
MI(T ,P) =

∑�T�
i=1

∑�P�
j=1

p(i, j)log
�

p(i,j)

p(i)p(j)

�
.

Homogeneity (HOM) measures all of its clusters contain
only entities which are members of a single class by

(4)cosine(X, Y) =
X ⋅ Y

‖X‖ × ‖Y‖

(5)ARI =
RI − E(RI)

max(RI) − E(RI)

(6)NMI(T ,P) =
MI(T ,P)

√
H(T)H(P)

Completeness (COM) measures all the entities that are
members of a given class are elements of the same cluster by

whereH(T ∣ P) is the conditional entropy of the ground-truth
classes given the predicted cluster labels, while H(P ∣ T) is
calculated by swapping the positions of T and P.

V-measure (V-M) is the harmonic mean of HOM and
COM.

Fowlkes-Mallows Index (FMI) ranges in [0, 1]. It is defined
as the geometric mean between of the precision and recall:

where TP is the number of True Positive (i.e., the number
of pairs of entities that belong to the same clusters in both T
and P), FP is the number of False Positive (i.e., the number
of pairs of entities that belong to the same clusters in T but
not in P) and FN is the number of False Negative (i.e., the
number of pairs of entities that belong to the same clusters
in P but not in T).

5 Results and analysis

5.1 Answering RQ1: coreference classification

This section is to demonstrate the effectiveness of Deep-
Coref comparing with baselines. Figure 5 presents the per-
formance of coreference classification on DeepCoref and
baselines, respectively, across the 10-fold cross-validation.
We can see that DeepCoref can achieve 96.10% precision
and 96.06% recall on average, which are much higher than
other baselines. The precision and recall of Word2Vec are
84.57% and 84.21%, respectively, LSI 84.12% and 84.01%,
Levenstein 84.65% and 83.46%. In addition, the length of the
box of DeepCoref is relatively lower than baselines, further
signifying the stability of the performance.

Figure 6 presents the precision and recall by 21 projects.
We can see both precision and recall of DeepCoref are more
stable and higher than other baselines across projects. The
average precision and recall of DeepCoref on projects reach
93.43% and 93.72%, Word2Vec 79.79% and 79.09%, LSI
81.91% and 81.90%, Levenstein 77.48% and 80.17%. The

(7)h = 1 −
H(T ∣ P)

H(T)

(8)c = 1 −
H(P ∣ T)

H(P)

(9)v = 2 ×
h × c

h + c

(10)FMI =
TP√

(TP + FP) × (TP + FN)

363Requirements Engineering (2022) 27:351–373

1 3

text presentation styles are distinct in different projects, so
the results of Word2Vec and Levenstein indicate large differ-
ences in performance on different projects. These two meth-
ods lack sentence-level information of context, thus cannot
capture the contextual semantic differences across projects
only using entity information. LSI fluctuates largely in sev-
eral projects although it can capture the sentential contextual
semantics. This is mainly because LSI is constructed based
on statistical information on current training data, the repre-
sentation ability is less powerful than models pre-trained on
large corpora and fine-tuned with training data. By contrast,
DeepCoref which is more stable, obtains a more powerful
representation by combining the contextual semantics, thus
more adaptable to different presentation styles.

The reasons why DeepCoref noticeably outperforms the
three baselines are:

• Type="SmallCaps">DeepCoref uses both sentence-
level and word-level semantics thus can capture more
information from contexts and entities.

• Type="SmallCaps">DeepCoref uses pre-trained models
thus can benefit from large general corpora pre-training.

• Type="SmallCaps">DeepCoref uses the fine-tuning
technique, which can improve adaptation on domain-
specific tasks.

5.2 Answering RQ2: clustering and normalization

This section is to demonstrate the performance of clustering.
Clustering evaluation: Table 1 shows the clustering

evaluation results on six metrics. Compared with the other
three coreference techniques (i.e., Word2Vec, LSI and

Levenstein), DeepCoref has the best performance on all six
metrics. The comparison among them can help understand
the impact of different coreference techniques on the cluster-
ing performance. For example, it is easy to understand that
DeepCoref has the best performance of coreference classi-
fication, which leads to the best performance of clustering.
The clustering performance of Word2Vec, LSI and Leven-
stein are different, especially on ARI and FMI, although
they have little difference on the performance of coreference
classification. This indicates that some misclassifications of
entity pairs are fatal, which can generate new clusters or split
the ground-truth clusters, and lead to performance decline of
clustering. The best performance of clustering from Deep-
Coref verifies its effectiveness on coreference classification
further. As for the comparison between DeepCoref and two
clustering baselines, DeepCoref also outperforms K-Means

Fig. 5 RQ1: The performance of coreference classification of Deep-
Coref over baselines. The cross is the mean value of 10-fold cross-
validation

Fig. 6 RQ1: The performance of coreference classification of Deep-
Coref over baselines by project. The number of projects is 21

364 Requirements Engineering (2022) 27:351–373

1 3

and DBSCAN on all six metrics, which indicates our pro-
posed clustering method is more effective than baselines.

The pairwise metrics (i.e., ARI and FMI) are sensitive to
the cases when entity pairs which belong to the same cluster
in the ground-truth are wrongly assigned into different clus-
ters, or which belong to different clusters, are wrongly placed
into the same cluster. We examine the clustering results and
find that clusters obtained by baselines contain more newly
formed clusters (e.g., X clusters in Fig. 7c) or splitted clus-
ters (e.g., cluster A1 and A2 in Fig. 7d) compared with Deep-
Coref. Therefore, DeepCoref has an obvious advantage on
ARI and FMI as shown in Table 1. The entropy-based met-
rics (i.e., NMI, HOM, COM and V-M) mainly evaluate the
changes of two distributions based on information entropy
theory. From the perspective of the number of clusters, there
are totally 355 clusters in the ground-truth. The total number
of clusters obtained by DeepCoref is 359, while the number
of clusters obtained by K-Means and DBSCAN are 350 and
376, respectively. All methods don’t change the distribution
of the entire clusters very much, which conforms to the small
improvement on NMI, HOM, COM and V-M in Table 1.
However, the coreference detection task needs to assign
coreferent (non-coreferent) entities into the same (different)
clusters correctly, rather than only keeps the distributions of
two clusters unchanged. Therefore, the pairwise metrics are
more significant than entropy-based metrics to requirement
engineers, which are exactly the advantages of DeepCoref
over baselines.

Example analysis: More details can be found in Fig. 7,
where we present top eight clusters of ground-truth, Deep-
Coref and two baselines. We can observe that the clustering
result of DeepCoref is roughly the same as the ground-truth,
but the clustering results of other baselines are somewhat
different from the ground-truth. More specifically, we first
compare Fig. 7a and b. The top eight clusters obtained by
DeepCoref roughly conform to the ground-truth, where the
cluster A, C, F and G are exactly the same, while the cluster
B′ , D′ , E′ and H′ miss some entities. From the comparison
between Fig. 7a and c, we can find that only the cluster E′ is
relatively accurate, which misses five entities. The cluster Y1
and Y2 consist of nodes from ground-truth cluster D and H,
and other small (grey) clusters. The other clusters denoted
as X are newly formed from entities which originally belong
to small (grey) clusters in the ground-truth. The top eight
clusters also changed compared with the ground-truth. As
for Fig. 7(d), the cluster A in the ground-truth is splitted into
two clusters (i.e., A1 and A2). The cluster Y1 and Y2 contain
nodes from ground-truth cluster D and H, and other small
(grey) clusters. Four newly formed clusters become top eight
clusters.

We present the examples of coreferent/non-coreferent
entities shown in Fig. 7. Table 2 demonstrates all 18 coref-
erent entities in cluster A, which are all correctly identified
by DeepCoref. We observe that all 18 examples share some
similar words in entities and related contexts, e.g., “warn-
ing”, “list”, and “stage” appearing in entities; “manager”,

Fig. 7 RQ2: The clustering results of ground truth, DeepCoref and baselines

Table 1 RQ2: Clustering
Performance

Method ARI NMI HOM COM V-M FMI

DeepCoref 0.929 0.992 0.995 0.990 0.992 0.930
Word2Vec 0.794 0.973 0.980 0.967 0.973 0.796
LSI 0.835 0.978 0.963 0.986 0.978 0.840
Levenstein 0.582 0.958 0.927 0.985 0.958 0.631
K-Means 0.569 0.957 0.963 0.951 0.957 0.580
DBSCAN 0.680 0.966 0.968 0.964 0.966 0.684

365Requirements Engineering (2022) 27:351–373

1 3

Table 2 RQ2: Examples of coreferent entities from cluster A of DeepCoref

Entity Context

1 Warning customer list in tracking stage Managers can view the warning customer list in tracking stage to check the comple-
tion of tracking stage in time.

2 List of alert customers in implementation stage Managers can view the list of alert customers in implementation stage to check the
completion of the implementation stage in time

3 Alert customer list in listening stage Managers can view alert customer list in listening stage and check the completion
of listening in time.

4 Customer in tracking stage The manager can see the completion of customer in tracking stage.
5 Customer in implementation stage Managers can see customer in implementation stage to follow their completion.
6 Customer in listening phrase Managers can view customer in listening phrase to follow their completion.
7 Warning list during tracking stage Account managers can examine the warning list during tracking stage to check the

completion.
8 Alert list in implementation stage Account managers can view the alert list in implementation stage to check their

completion.
9 Warning list in demo stage The managers can view the warning list in demo stage to examine the completion of

the demo stage.
10 Warning customer information in tracking stage Managers can check warning customer information in tracking stage, so that they

can follow the completion.
11 Warning customer information during implementation Managers can view warning customer information during implementation to track

the completion of implementation stage.
12 Early-warning customer information in listening stage Managers can check early-warning customer information in listening stage, so that

they can follow the completion.
13 Warning user list in tracking stage Managers can view warning user list in tracking stage to follow the completion of

tracking stage.
14 Alert user in implementation stage The managers can view alert user in implementation stage to follow the completion

of implementation stage.
15 Warning customer in listening stage Managers can view warning customer in listening stage to follow the completion of

listening stage.
16 Warning customer table during tracking stage Managers can view the warning customer table during tracking stage to check the

completion of tracking stage.
17 List of warning customer in implementation stage Managers can view the list of warning customer in implementation stage to check

the completion of tracking stage in time.
18 Alarm list in demo stage Managers can view the alarm list in demo stage, so that they can check the comple-

tion of demo stage.

Table 3 RQ2: Examples of non-coreferent entities from top 8 clusters of DeepCoref

cid Normalized Entity Context

A Warning customer list in tracking stage Managers can view the warning customer list in tracking stage to check the completion of
tracking stage in time.

B’ Company announcement information Account managers can check the company announcement information outside the bank to
get more comprehensive information about the client.

C Trading rules for the fund Account managers can view the trading rules for the fund on the fund details page.
D’ Completion of monthly target The center supervisor can view the performance statistics and the completion of monthly

target of the account manager.
E’ Customer basic information The system can provide a public interface to maintain the customer basic information and

manage the customer maintenance information uniformly.
F Project information The project manager can modify the project information to keep it accurate.
G Account information of cooperative institutions The investment manager has the function of editing or deleting the account information of

cooperative institutions, so that I can adjust the historical error information.
H’ Contract information Project managers can add contract information and contracts can be reviewed paperless in

the system

366 Requirements Engineering (2022) 27:351–373

1 3

“view”, and “completion” appearing in contexts. Therefore,
they can be easily inferred as coreferent entities by Deep-
Coref Then we turn to Table 3, it presents the normalized
entity and related contexts of top 8 clusters. We can observe
that both entities and contextual words are greatly different
across clusters. The results of two tables shows the effective-
ness of clustering coreferent entities, and the effectiveness
of assigning a normalized name to each cluster.

Classification Improvement: Table 4 presents the perfor-
mance improvement on coreference classification brought
by clustering. We can observe that clustering can improve
the precision, recall and F1 of coreference classification
by 2.52%, 2.57% and 2.55%, respectively. We examine the
differences in the results, and find that our proposed clus-
tering method improves the classification performance by
correcting the classification result with low confidence of
two entities. Such misclassified cases tend to produce false
nodes or miss true nodes between two clusters, which leads
to wrongly or not merging clusters. Totally, our proposed
clustering method corrects 87 samples which are misclassi-
fied by coreference network, although introduces 19 wrong
corrections, which improves the overall performance of
coreference classification.

In summary, the advantage of DeepCoref over other
methods on evaluation metrics and network graphs indi-
cates that it can cluster entities accurately based on the pre-
dicted results from context-wise coreference network. This is
because compared with other methods, DeepCoref can cap-
ture semantics more efficiently by combining the semantics
of both entities and contexts after performing coreference
classification.

5.3 Answering RQ3: ablation experiment

This section is to demonstrate the different contribution of
each component of DeepCoref to coreference classification.
Figure 8 presents the performance of coreference classifica-
tion on DeepCoref and three variants, respectively, across
the 10-fold cross-validation. The average of precision and
recall of DeepCoref-ctx reach 79.83% and 68.21%, Deep-
Coref-entity 63.17% and 61.77%, DeepCoref-LSI 66.25%
and 62.62%, respectively. The performance of DeepCoref is
much higher and more stable than three variants.

The comparison among DeepCoref, DeepCoref-ctx and
DeepCoref-entity indicates the performance enhancement

from different components of context-wise coreference
network. More specifically, the fine-tuning BERT model
improves the performance of precision and recall by
32.93% and 34.29% (differences between DeepCoref and
DeepCoref-entity). The Word2Vec-based network improves
performance by 16.27% and 27.85% (differences between
DeepCoref and DeepCoref-ctx). The comparison between
DeepCoref-ctx and DeepCoref-entity indicates that contex-
tual semantics are more effective than entity semantics. The
improvement of precision and recall reaches 16.66% and
6.44% (differences between DeepCoref-ctx and DeepCoref-
entity), respectively. The comparison between DeepCoref
and DeepCoref-LSI indicates the stronger contextual rep-
resentation from BERT than LSI, where the improvement
reaches 29.85% and 33.44% (differences between DeepCoref
and DeepCoref-LSI), respectively.

In summary, each component of our network improves
the performance to varying degrees. Their combination can
obtain a quite promising performance. In addition, the appli-
cation of fine-tuning BERT model significantly enhances
performance.

5.4 Answering RQ4: data sensitivity

This section is to demonstrate the influence of different data
size on coreference classification. Figure. 9 represents the
relationship between performance and time consumption of
DeepCoref when enlarging the size of the dataset. When the
training set increases from 5% to 90%, the performance of
DeepCoref rises sharply before 20% and has a small increase
later. The variance of data at each point after 40% is also
similar. We obtain the best performance at the last point
where we use 90% data as training set. The inflection point

Table 4 RQ2: The performance improvement on the coreference
classification brought by clustering

Precision (%) Recall (%) F1 (%)

Classification 96.10 96.06 96.08
Clustering 98.52 98.53 98.53

Fig. 8 RQ3: The performance of DeepCoref and its variants. The
cross is the mean value of 10-fold cross-validation

367Requirements Engineering (2022) 27:351–373

1 3

occurs with 95.25% precision and 95.30% recall, when we
use 60% data as training set. This indicates that DeepCoref
is not very sensitive after the training set is greater than 60%
(i.e., around 1100 in our experimental settings). Moreover,
we can find that just using 20% data for training, the perfor-
mance is also greater than 92% on average. It demonstrates
that DeepCoref can address the low-resource problem well.
In addition, the time consumption increases approximatively
linearly from 159.42s to 412.52s. Considering our experi-
mental environment, the time consumption of training the
model is acceptable.

In summary, benefiting from large corpora pre-training
and the fine-tuning technique, DeepCoref can reach a prom-
ising performance on a relatively small dataset. This alle-
viate the domain adaption problem such as low-resource
problem to some extent.

6 Discussion

6.1 Parameter settings on baselines

The performances of baselines are affected by the value
selection of similarity ratios. Here, we discuss the param-
eter determination process in our experiments. To achieve
the best performance of these baselines, we conduct a set of
experiments to find the sweet parameters. The best param-
eter settings are used in the comparison. Baselines are sim-
ilarity-based methods, which are sensitive to the value of
the ratio, so the parameter we analyze is similarity ratio.
We vary the values of similarity ratios for Word2Vec, LSI,
and Levenstein, respectively, and evaluate their impact on
the performance. We present the box-plot changing curve
(each box includes 10 results from 10-fold cross-validation)

of F1-Score for each method, when the ratio increases in
[0, 1] by step 0.01 (for readability, the step in the figure is
0.03). We also present the optimal value of the ratio for each
round of 10-fold cross-validation of each method. The final
similarity ratio of each method is computed by an average
of 10 optimal values.

Figure 10 shows the F1-Score when the similarity ratio
increases from 0 to 1 for each baseline. We can see that the
ratio can influence the performance of these similarity-based
methods significantly, and the optimal values are distinct for
each method. Generally with the increase of similarity ratio,
the F1-Score first rises and then declines for all methods.
Nevertheless, this general trend exhibits a slight difference
among these methods. For Word2Vec, the curve is steep,
rising when the ratio is less than 0.85 and declining after
that, which means that the optimal values of the ratio are
stable around 0.85 for each round of 10-fold cross-valida-
tion. For LSI, the curve rises slowly before 0.5, then keeps

Fig. 9 RQ4: The performance of DeepCoref by data augmentation.
The dotted line is time consuming

Fig. 10 The boxplot changing curve of F1-Score with the similarity ratio increasing from 0 to 1 by step 0.03 for each method. Each box contains
results of one 10-fold cross-validation

368 Requirements Engineering (2022) 27:351–373

1 3

steady between 0.5 and 0.7, and finally declines after 0.7.
This means that the optimal values fluctuate in the interval
(0.5, 0.7) for all rounds. For Levenstein, the cure rises dra-
matically before 0.25, then declines slowly between 0.25
and 0.65, and declines dramatically after 0.65. The optimal
values are around 0.25.

Table 5 shows the optimal similarity ratios of each
method for each round of 10-fold cross-validation. For each
fold, the optimal similarity ratios of Word2Vec and Lev-
enstein are the same values of 0.85 and 0.25, respectively,
while the optimal ratio of LSI fluctuates slightly around
0.67, which is consistent with changing curves in Fig. 10.
The final ratio is computed by the average of these optimal
values, where the ratios of Word2Vec, LSI and Levenstein
are 0.85, 0.67 and 0.25, respectively. Hence, one should
carefully tune the similarity ratios for each method, in order
to achieve the best performance for a fair comparison.

6.2 Applicability

Resolving EC is usually a downstream task of entity extrac-
tion task in the pipeline of requirement analysis. In prac-
tice, entity extraction can rely on automated tools, and does
not need much manual effort. The application scenario of
DeepCoref is to resolve coreference on entities produced
by these automated tools. There are several techniques for
entity extraction such as general NLP tools [1, 22, 31] and
domain-specific tools [42, 70]. When applying DeepCoref
for detecting EC, one can firstly extract entities using tools
mentioned above, then truncate contexts (see Sect. 3.1)
and format the data to train the context-wise coreference
network for coreference classification (see Sect. 3.2). You
can also perform clustering and normalization to establish a
non-coreferent entity dictionary. (see Sect. 3.3). Our method
takes entities and related natural-language contextual text
as input, and outputs coreferent clusters, and a normalized

name for each coreferent cluster. We additionally list some
key points when applying our method:

• Our method is evaluated on short texts, where contexts
can contain enough semantic information. When apply-
ing to long texts, some contexts truncated by window
may lack useful information which is far from entities.
Tuning window size might alleviate the problem.

• Our data are from financial domain. One should annotate
about one thousand samples for fine-tuning the whole
model to tackle domain adaption.

• The entities in our data are ready-made. If someone
wants to apply our method but has no entities, he/she
can select an automated tool to conduct entity extraction
firstly.

• When applying to other languages, BERT and word
embeddings must be pre-trained on corpus of corre-
sponding languages.

7 Threats to validity

External validity: The external threats are related to the gen-
eralizability of the method. The experimental data are col-
lected from the industry community, labeled manually, and
evaluated on finance domain. However, we have retrieved as
many projects as possible, and most annotators are domain
practitioners and experts. The evaluation results by projects
show that our method is generalized across projects, which
alleviates the threat to some extent. In addition, our method
uses BERT pre-trained on large general corpus and the fine-
tuning technique, which alleviates the low-resource and gen-
eralizability problem. The Word2Vec we used is trained on
Wikipedia dump, which might yield different results when
training it on software requirement documents.

Internal validity: The internal threats relate to experimen-
tal errors and biases. Threats to internal validity may come
from the entity extraction. The entities in our data are ready-
made and well-maintained by our industry partners, which
has a slight impact on our results. Additionally, the quality
of extracted entities has little impact on this task. Because
the idea of our proposed method is to learn whether two enti-
ties are coreferent based on the similarity of the combined
semantics of entities and corresponding contexts. While low-
quality entities will not impact our method to perform the
semantic comparison, it will produce potentially semanti-
cally related but not properly extracted entities. Therefore,
manual review on extracted entities is inevitable if auto-
mated entity extraction tools cannot work well in practice.

Construct validity: The construct threats relate to the
suitability of evaluation metrics. We utilize precision and
recall for coreference classification evaluation, where we
use cosine similarity to measure whether two entities are

Table 5 The optimal similarity ratios of each method for each round
of 10-fold cross-validation

#Fold Word2Vec LSI Levenstein

#1 0.85 0.69 0.25
#2 0.85 0.68 0.25
#3 0.85 0.71 0.25
#4 0.85 0.68 0.25
#5 0.85 0.67 0.25
#6 0.85 0.59 0.25
#7 0.85 0.70 0.25
#8 0.85 0.59 0.25
#9 0.85 0.67 0.25
#10 0.85 0.67 0.25
Average 0.85 0.67 0.25

369Requirements Engineering (2022) 27:351–373

1 3

coreferent. The threats might come from the selection of
similarity ratio. To reduce that threat, we perform an experi-
ment on tuning ratios and use the average of optimal values
as ratios (see Sect. 6.1). In addition, both predicted positive
and negative labels are equally important in predictions, so
we calculate the evaluation metrics for each label and take
their unweighted mean as final results. As for clustering
evaluation, we utilize six metrics including pairwise metrics
and entropy-based metrics. These metrics measure cluster-
ing performance from different angles, which alleviates the
threat.

8 Related work

Our work is related to previous studies that focused on (1)
detection of inconsistency in requirements written in natural
language; and (2) coreference resolution. We briefly review
the recent works in each category.

8.1 Detection of inconsistency

The amount of research on inconsistency detection has
increased significantly in the past years. Mezghani et al. [56]
used unsupervised machine learning algorithm, K-Means,
for a redundancy and inconsistency detection in the RE con-
text. They introduced a filtering method to eliminate “noisy”
requirements and a pre-processing step based on the NLP
technique and used PoS tagging and noun chunking to detect
technical business terms. PBURC [5] is a pattern-based
unsupervised requirements clustering framework (based on
K-Means algorithm), which makes use of machine-learning
methods for requirements validation. The method aimed to
overcome data inconsistencies and effectively determine
appropriate requirements clusters for the optimal definition
of software development sprints. Traditional techniques such
as bag-of-words (BOW), Term Frequency and Inverse Docu-
ment Frequency (TF-IDF) frequency matrix and n-gram lan-
guage modeling were firstly used on redundancy detection.
Juergens et al. [33] found that clone detection, a technique
widely applied to source code, is promising to assess redun-
dancy in an automated way. They used ConQAT to identify
copy&paste operations in software requirements specifica-
tions. Falessi et al. [17] conjectured and assessed that NLP
techniques identifying equivalent requirements perform
on a given dataset according to both ability and the odds
of making correct identification. Also, they proposed a set
of seven principles for evaluating the performance of NLP
techniques in identifying equivalent requirements. They used
IR methods such as Latent Semantic Analysis. Rago et al.
[65] introduced a novel method called ReqAligner that aids
analysts to spot signs of duplication in use cases in an auto-
mated fashion. ReqAligner combines several text processing

techniques, such as a use case classifier and a customized
algorithm for sequence alignment.

Ambiguity is usually related to inconsistency. In the liter-
ature, many works have been proposed to tackle the problem
of ambiguity in written requirements. Ferrari et al. [21] pre-
sented an NLP method to identify ambiguous terms between
different domains and rank them by ambiguity score. The
method is based on building domain-specific language mod-
els in each domain. They compared different word embed-
dings of one identical term from different domains to esti-
mate its potential ambiguity across the domains of interest.
There are some works using special terms and expressions
with different PoS or patterns [6, 18, 19, 23, 67, 72]. Other
works use heuristics to tackle coordination ambiguities (i.e.,
ambiguities brought by “and” or “or” conjunctions) [7] and
anaphoric ones (i.e., ambiguities brought by pronouns) [78].

Our work complements to the existing researches in two
aspects:

• It is a method to resolving EC in RE. Detecting EC can
improve the readability and understandability of require-
ments.

• It is a deep learning method, which is more powerful and
generic.

8.2 Coreference resolution

Our work is inspired by CDCR, so we review representa-
tive works on CR in recent years. For WDCR, Lee et al.
[41] introduced the first end-to-end coreference resolution
model without using a syntactic parser or handengineered
mention detector. The key idea is to directly consider all
spans in a document as potential mentions and learn dis-
tributions over possible antecedents for each. Joshi et al.
[32] fine-tuned BERT to coreference resolution, achieving
the state-of-the-art performance. However, they considered
there is still room for improvement in modeling document-
level context, conversations, and mention paraphrasing. As
for CDCR, Lee et al. [40] introduced a novel coreference
resolution system that models entities and events jointly by
iteratively constructing clusters of entity and event mentions
using linear regression to model cluster merge operations.
The joint formulation allowed information from event coref-
erence to help entity coreference, and vice versa. Inspired
by [40], Barhom et al. [2] proposed a neural architecture for
cross-document coreference resolution, which represents an
event (entity) mention using its lexical span, surrounding
context, and relation to entity (event) mentions via predicate-
arguments structures.

This work draws on the ideas of CDCR entity methods,
but at the same time takes into account the characteristics
of EC in RE. We summarize three differences between EC
in RE and EC in general NLP tasks below:

370 Requirements Engineering (2022) 27:351–373

1 3

• Coreferent entities in RE usually occur among multi-
word noun phrases, and most entities are technical terms
and relatively independent. It is not necessary to detect
pronoun coreferences or traverse all probable mentions,
because its main aim is to reach a shared understanding
on some basic concepts among multiple stakeholders.

• Coreferent entities in RE are scattered in various sections
of the natural-language requirement, which implies that
the EC detection in RE are more dependent on the con-
textual semantics.

• The EC in RE is domain-specific tasks, which implies
that there are domain adaptation problems such as low-
resource problem. However, general EC tasks can obtain
support from large general corpora or public knowledge
bases.

9 Conclusion and future work

This paper resolves Entity Coreference in requirement engi-
neering. We propose a DEEP context-wise method for entity
COREFerence detection, which we name DeepCoref. The
first step is to truncate contexts around entities. Then, we
construct a context-wise coreference network for coreference
classification. It consists of a fine-tuning BERT model for
context representation, a Word2Vec-based network for entity
representation, and a multi-layer perceptron is followed to
fuse and make a trade-off between two representations in
order to obtain a better representation of the entity. Finally,
we assign entities which are coreferent to one concept into
one same cluster by clustering, and assign a normalized
name to each coreferent cluster by normalization. We inves-
tigate the effectiveness of DeepCoref with 1853 samples on
21 projects from the industry community. The experimental
results of coreference classification show that our method
significantly outperforms three baselines with average pre-
cision and recall of 96.10% and 96.06%, respectively. The
clustering performance of DeepCoref is higher on six met-
rics compared with two baselines. In order to demonstrate
the performance enhancement from different components of
context-wise coreference network, we compare the perfor-
mance of DeepCoref and three variants as well.

 Type="SmallCaps">DeepCoref works better, mainly
benefiting from its novel design of context-wise corefer-
ence network. The combined sentence-level context repre-
sentation and word-level entity representation can be trained
jointly with other parameters, thus obtaining a better entity
representation. In addition, we only need to annotate a small
amount of data for fine-tuning, which obtains a promising
result, because DeepCoref can benefit from fine-tuning tech-
nique and pre-trained models (i.e., BERT and word embed-
dings) trained on large general corpora. It alleviates the
problem of insufficient annotated resource and the high cost

of manual annotation as well. The results also confirm that
our method could effectively detect entity coreference from
natural-language requirements, thus can facilitate reaching a
shared understanding on entities among multiple stakehold-
ers from different domains in an automated way.

In the future, we plan to add some event features into
the entity representations based on what we have proposed
in this work, because we observe that one entity is usually
associated with a chain of events, such as CRUD (i.e., cre-
ate, read, update and delete). Therefore, event information
has the potential to help distinguish entities more precisely.

Acknowledgements This work is supported by the National Key
Research and Development Program of China under grant No.
2018YFB1403400, the National Science Foundation of China under
grant No. 61802374, No. 61432001, No. 61602450. This work is also
supported by China Merchants Bank Intelligent Software Research and
Development Effectiveness Research Project.

References

 1. Arora C, Sabetzadeh M, Briand LC, Zimmer F (2017) Automated
extraction and clustering of requirements glossary terms. IEEE
Trans Software Eng 43(10):918–945

 2. Barhom S, Shwartz V, Eirew A, Bugert M, Reimers N, Dagan I
(2019) Revisiting joint modeling of cross-document entity and
event coreference resolution. In: A. Korhonen, D.R. Traum,
L. Màrquez (eds.) Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Flor-
ence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp.
4179–4189. Association for Computational Linguistics

 3. Baziotis C, Pelekis N, Doulkeridis C (2017) Datastories at seme-
val-2017 task 4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In: proceedings of the 11th inter-
national workshop on semantic evaluation (SemEval-2017), pp.
747–754. Association for Computational Linguistics, Vancouver,
Canada

 4. Beheshti S, Benatallah B, Venugopal S, Ryu SH, Motahari-
Nezhad HR, Wang W (2017) A systematic review and compara-
tive analysis of cross-document coreference resolution methods
and tools. Computing 99(4):313–349

 5. Belsis P, Koutoumanos A, Sgouropoulou C (2014) PBURC: a
patterns-based, unsupervised requirements clustering frame-
work for distributed agile software development. Requir Eng
19(2):213–225

 6. Berry DM, Kamsties E (2005) The syntactically dangerous all and
plural in specifications. IEEE Software 22(1):55–57

 7. Chantree F, Nuseibeh B, De Roeck A, Willis A(2006) Identifying
nocuous ambiguities in natural language requirements. In: 14th
IEEE international requirements engineering conference (RE’06)

 8. Chen X, Liu Z, Sun M (2014) A unified model for word sense
representation and disambiguation. In: A. Moschitti, B. Pang,
W. Daelemans (eds.) Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pp. 1025–1035. ACL

 9. Cleland-Huang J Mining domain knowledge [requirements]. IEEE
Software 32(3): 16–19

 10. Cohen WW, Ravikumar P, Fienberg SE (2003)A comparison of
string distance metrics for name-matching tasks. In: S. Kambham-
pati, C.A. Knoblock (eds.) Proceedings of IJCAI-03 Workshop

371Requirements Engineering (2022) 27:351–373

1 3

on Information Integration on the Web (IIWeb-03), August 9-10,
2003, Acapulco, Mexico, pp. 73–78

 11. Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K,
Kuksa PP (2011) Natural language processing (almost) from
scratch. J Mach Learn Res 12:2493–2537

 12. Deerwester SC, Dumais ST, Landauer TK, Furnas GW, Harsh-
man RA (1990) Indexing by latent semantic analysis. JASIS
41(6):391–407

 13. Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-train-
ing of deep bidirectional transformers for language understanding.
In: Proceedings of the 2019 conference of the North American
chapter of the association for computational linguistics: human
language technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 , pp. 4171–4186 (Long and Short
Papers)

 14. Doddington GR, Mitchell A, Przybocki MA, Ramshaw LA, Stras-
sel SM, Weischedel RM (2004) The automatic content extraction
(ACE) program - tasks, data, and evaluation. In: proceedings of
the fourth international conference on language resources and
evaluation, LREC 2004, May 26-28, 2004, Lisbon, Portugal.
European Language Resources Association

 15. Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algo-
rithm for discovering clusters in large spatial databases with noise.
In: proceedings of the second international conference on knowl-
edge discovery and data mining (KDD-96), Portland, Oregon,
USA, pp. 226–231. AAAI Press

 16. Fabbrini F, Fusani M, Gnesi S, Lami G (2001) The linguistic
approach to the natural language requirements quality: Benefits of
the use of an automatic tool. In: proceedings 26th annual NASA
Goddard software engineering workshop, 2001

 17. Falessi D, Cantone G, Canfora G (2013) Empirical principles and
an industrial case study in retrieving equivalent requirements via
natural language processing techniques. IEEE Trans Software Eng
39(1):18–44

 18. Femmer H, Fernández DM, Wagner S, Eder S (2017) Rapid qual-
ity assurance with requirements smells. J Syst Softw 123:190–213

 19. Femmer H, Kucera J, Vetro A (2014) On the impact of pas-
sive voice requirements on domain modelling. In: M. Morisio,
T. Dybå, M. Torchiano (eds.) 2014 ACM-IEEE international
symposium on empirical software engineering and measurement,
ESEM ’14, Torino, Italy, September 18-19, 2014, pp. 21:1–21:4.
ACM

 20. ...Fernández DM, Wagner S, Kalinowski M, Felderer M, Mafra P,
Vetro A, Conte T, Christiansson M, Greer D, Lassenius C, Män-
nistö T, Nayabi M, Oivo M, Penzenstadler B, Pfahl D, Priklad-
nicki R, Ruhe G, Schekelmann A, Sen S, Spínola RO, Tuzcu A, de
la Vara JL, Wieringa RJ (2017) Naming the pain in requirements
engineering - contemporary problems, causes, and effects in prac-
tice. Empirical Softw Eng 22(5):2298–2338

 21. Ferrari A, Esuli A (2019) An NLP approach for cross-domain
ambiguity detection in requirements engineering. Autom Softw
Eng 26(3):559–598

 22. Gemkow T, Conzelmann M, Hartig K, Vogelsang A (2018) Auto-
matic glossary term extraction from large-scale requirements
specifications. In: 26th IEEE international requirements engineer-
ing conference, RE 2018, Banff, AB, Canada, August 20-24, 2018,
pp. 412–417

 23. Gleich B, Creighton O, Kof L (2010) Ambiguity detection:
Towards a tool explaining ambiguity sources. In: R.J. Wieringa,
A. Persson (eds.) Requirements Engineering: Foundation for Soft-
ware Quality, 16th International Working Conference, REFSQ
2010, Essen, Germany, June 30 - July 2, 2010. Proceedings, Lec-
ture Notes in Computer Science, vol. 6182, pp. 218–232. Springer

 24. Gomaa W, Fahmy AA (2013) A survey of text similarity
approaches. Int J Comput Appl 68(13)

 25. Har r is ZS (1954) Distr ibutional structure. WORD
10(2–3):146–162

 26. Hey T, Keim J, Koziolek A, Tichy WF (2020) Norbert: Transfer
learning for requirements classification. In: 28th IEEE Interna-
tional Requirements Engineering Conference, RE 2020, Zurich,
Switzerland, August 31 - September 4, 2020, pp. 169–179. IEEE

 27. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780

 28. Huang EH, Socher R, Manning CD, Ng AY(2012) Improving
word representations via global context and multiple word proto-
types. In: The 50th Annual Meeting of the Association for Com-
putational Linguistics, Proceedings of the Conference, July 8-14,
2012, Jeju Island, Korea - Volume 1: Long Papers, pp. 873–882
(2012)

 29. Huang Y, Chen C, Xing Z, Lin T, Liu Y (2018) Tell them apart:
distilling technology differences from crowd-scale comparison
discussions. In: M. Huchard, C. Kästner, G. Fraser (eds.) Proceed-
ings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018, pp. 214–224. ACM

 30. Hull MEC, Jackson K, Dick J (2002) Requirements engineering.
Springer, London

 31. Johann T, Stanik C, B, AMA, Maalej W (2017)SAFE: A simple
approach for feature extraction from app descriptions and app
reviews. In: 25th IEEE International Requirements Engineering
Conference, RE 2017, Lisbon, Portugal, September 4-8, 2017, pp.
21–30

 32. Joshi M, Levy O, Zettlemoyer L, Weld DS (2019) BERT for coref-
erence resolution: Baselines and analysis. In: K. Inui, J. Jiang,
V. Ng, X. Wan (eds.) Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019,
pp. 5802–5807. Association for Computational Linguistics

 33. Jürgens E, Deissenboeck F, Feilkas M, Hummel B, Schätz B,
Wagner S, Domann C, Streit J (2010) Can clone detection support
quality assessments of requirements specifications? In: J. Kramer,
J. Bishop, P.T. Devanbu, S. Uchitel (eds.) Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering -
Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010,
pp. 79–88. ACM

 34. Khlif W, Haoues M, Sellami A, Ben-Abdallah H (2017) Ana-
lyzing functional changes in BPMN models using COSMIC. In:
J.S. Cardoso, L.A. Maciaszek, M. van Sinderen, E. Cabello (eds.)
Proceedings of the 12th International Conference on Software
Technologies, ICSOFT 2017, Madrid, Spain, July 24-26, 2017,
pp. 265–274. SciTePress

 35. Khlif W, Sellami A, Haoues M, Ben-Abdallah, H (2018) Using
COSMIC FSM method to analyze the impact of functional
changes in business process models. In: E. Damiani, G. Spanouda-
kis, L.A. Maciaszek (eds.) Proceedings of the 13th International
Conference on Evaluation of Novel Approaches to Software Engi-
neering, ENASE 2018, Funchal, Madeira, Portugal, March 23-24,
2018, pp. 124–136. SciTePress

 36. Kingma DP, Ba J (2015) Adam: A method for stochastic optimiza-
tion. In: 3rd international conference on learning representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings

 37. Kohavi R (1995) A study of cross-validation and bootstrap for
accuracy estimation and model selection. In: Proceedings of the
Fourteenth International Joint Conference on Artificial Intel-
ligence. , IJCAI 95, Montréal Québec, Canada 2:1137–1145
(August 20-25 1995)

 38. Lawrence, HubertPhipps, Arabie: comparing partitions. J Classif
(1985)

372 Requirements Engineering (2022) 27:351–373

1 3

 39. Le QV, Mikolov T (2014) Distributed representations of sen-
tences and documents. In: Proceedings of the 31th International
Conference on Machine Learning, ICML 2014, Beijing, China,
21-26 June 2014. JMLR Workshop and Conference Proceedings
32:1188–1196

 40. Lee H, Recasens M, Chang AX, Surdeanu M, Jurafsky D (2012)
Joint entity and event coreference resolution across documents.
In: J. Tsujii, J. Henderson, M. Pasca (eds.) Proceedings of the
2012 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning,
EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, pp.
489–500. ACL

 41. Lee K, He L, Lewis M, Zettlemoyer L (2017) End-to-end neural
coreference resolution. In: M. Palmer, R. Hwa, S. Riedel (eds.)
Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2017, Copenhagen, Den-
mark, September 9-11, 2017, pp. 188–197. Association for Com-
putational Linguistics

 42. Li M, Yang Y, Shi L, Wang Q, Hu J, Peng X, Liao W, Pi G (2020)
Automated extraction of requirement entities by leveraging
LSTM-CRF and transfer learning. In: IEEE International Con-
ference on Software Maintenance and Evolution, ICSME 2020,
Adelaide, Australia, September 28 - October 2, 2020, pp. 208–
219. IEEE

 43. Li M, Zhang T, Chen Y, Smola AJ (2014) Efficient mini-batch
training for stochastic optimization. In: S.A. Macskassy, C. Per-
lich, J. Leskovec, W. Wang, R. Ghani (eds.) The 20th ACM SIG-
KDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014,
pp. 661–670. ACM

 44. Li S, Zhao Z,Hu R, Li, W, Liu T, Du X (2018) Analogical reason-
ing on chinese morphological and semantic relations. In: Proceed-
ings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2018, Melbourne, Australia, July 15-20,
2018, Volume 2: Short Papers, pp. 138–143

 45. Lian X, Rahimi M, Cleland-Huang J, Zhang L, Ferrai R, Smith
M (2016) Mining requirements knowledge from collections of
domain documents. In: 24th IEEE International Requirements
Engineering Conference, RE 2016, Beijing, China, September
12-16, 2016, pp. 156–165. IEEE Computer Society

 46. Logeswaran L, Chang M, Lee K, Toutanova K, Devlin J, Lee H
(2019) Zero-shot entity linking by reading entity descriptions. In:
A. Korhonen, D.R. Traum, L. Màrquez (eds.) Proceedings of the
57th Conference of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pp. 3449–3460. Association for Computational
Linguistics

 47. Lu J, Ng V (2017) Joint learning for event coreference resolution.
In: R. Barzilay, M. Kan (eds.) Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long
Papers, pp. 90–101. Association for Computational Linguistics

 48. Mahmoud A, Niu N (2015) On the role of semantics in automated
requirements tracing. Requir Eng 20(3):281–300

 49. Maletic JI, Marcus A (2000) Using latent semantic analysis to
identify similarities in source code to support program under-
standing. In: 12th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2000), 13-15 November 2000, Van-
couver, BC, Canada, pp. 46–53

 50. Mallows EBFL (1983) A method for comparing two hierarchical
clusterings. J Am Stat Assoc 78(383):553–569

 51. Manning CD, Raghavan P, Schütze H (2010)Introduction to infor-
mation retrieval

 52. Marcus A, Maletic JI (2001) Identification of high-level concept
clones in source code. In: 16th IEEE International Conference on

Automated Software Engineering (ASE 2001), 26-29 November
2001, Coronado Island, San Diego, CA, USA, pp. 107–114

 53. Marcus A, Maletic JI (2003) Recovering documentation-to-
source-code traceability links using latent semantic indexing.
In: Proceedings of the 25th International Conference on Soft-
ware Engineering, May 3-10, 2003, Portland, Oregon, USA, pp.
125–137

 54. Melamud O, Goldberger J, Dagan I(2016) context2vec: Learning
generic context embedding with bidirectional LSTM. In: Proceed-
ings of the 20th SIGNLL Conference on Computational Natu-
ral Language Learning, CoNLL 2016, Berlin, Germany, August
11-12, 2016, pp. 51–61

 55. Melamud O, McClosky D, Patwardhan S, Bansal M (2016)
The role of context types and dimensionality in learning word
embeddings. In: K. Knight, A. Nenkova, O. Rambow (eds.)
NAACL HLT 2016, The 2016 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics:
Human Language Technologies, San Diego California, USA, June
12-17, 2016, pp. 1030–1040. The Association for Computational
Linguistics

 56. Mezghani M, Kang J, Sèdes F(2018) Industrial requirements clas-
sification for redundancy and inconsistency detection in SEMIOS.
In: G. Ruhe, W. Maalej, D. Amyot (eds.) 26th IEEE International
Requirements Engineering Conference, RE 2018, Banff, AB, Can-
ada, August 20-24, 2018, pp. 297–303. IEEE Computer Society

 57. Mihalcea R, Tarau P(2004) Textrank: Bringing order into text.
Emnlp pp. 404–411

 58. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation
of word representations in vector space. In: Y. Bengio, Y. LeCun
(eds.) 1st International Conference on Learning Representations,
ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings

 59. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Dis-
tributed representations of words and phrases and their composi-
tionality. In: Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States, pp. 3111–3119

 60. Misra J, Das S (2013) Entity disambiguation in natural language
text requirements. In: P. Muenchaisri, G. Rothermel (eds.) 20th
Asia-Pacific Software Engineering Conference, APSEC 2013,
Ratchathewi, Bangkok, Thailand, December 2-5, 2013 - Volume
1, pp. 239–246. IEEE Computer Society

 61. Nguyen XV, Epps J, Bailey J (2010) Information theoretic meas-
ures for clusterings comparison: variants, properties, normaliza-
tion and correction for chance. J Mach Learn Res 11:2837–2854

 62. Palangi H, Deng L, Shen Y, Gao J, He X, Chen J, Song X,
Ward RK(2015) Deep sentence embedding using the long short
term memory network: Analysis and application to information
retrieval. CoRR arXiv: abs/ 1502. 06922

 63. Pennington J, Socher R, Manning CD (2014) Glove: Global vec-
tors for word representation. In: A. Moschitti, B. Pang, W. Daele-
mans (eds.) Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Inter-
est Group of the ACL, pp. 1532–1543. ACL

 64. Radford A, Narasimhan K, Salimans T, Sutskever I (2018)
Improving language understanding by generative pre-training

 65. Rago A, Marcos CA, Diaz-Pace JA (2016) Identifying duplicate
functionality in textual use cases by aligning semantic actions.
Softw Syst Model 15(2):579–603

 66. Rijsbergen C (1979) Information retrieval (2nd edition)
 67. Rosadini B, Ferrari A, Gori G, Fantechi A, Gnesi S, Trotta I,

Bacherini S (2017) Using NLP to detect requirements defects:
An industrial experience in the railway domain. In: P. Grün-
bacher, A. Perini (eds.) Requirements Engineering: Foundation

http://arxiv.org/abs/1502.06922

373Requirements Engineering (2022) 27:351–373

1 3

for Software Quality - 23rd International Working Conference,
REFSQ 2017, Essen, Germany, February 27 - March 2, 2017,
Proceedings,. Lecture Notes in Computer Science 10153:344–360
(Springer)

 68. Rosenberg A, Hirschberg J (2007) V-measure: A conditional
entropy-based external cluster evaluation measure. In: J. Eisner
(ed.) EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, June 28-30, 2007,
Prague, Czech Republic, pp. 410–420. ACL

 69. Sato-Ilic M (2000) On evaluation of clustering using homogeneity
analysis. In: Proceedings of the IEEE International Conference on
Systems, Man & Cybernetics: “Cybernetics Evolving to Systems,
Humans, Organizations, and their Complex Interactions”, Shera-
ton Music City Hotel, Nashville, Tennessee, USA, 8-11 October
2000, pp. 3588–3593. IEEE

 70. Shi L, Li M, Xing M, Wang Y, Wang Q, Peng X, Liao W, Pi
G, Wang H (2020) Learning to extract transaction function from
requirements: an industrial case on financial software. In: ESEC/
FSE ’20: 28th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineer-
ing, Virtual Event, USA, November 8-13, 2020, pp. 1444–1454.
ACM

 71. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdi-
nov R (2014) Dropout: a simple way to prevent neural networks
from overfitting. J Mach Learn Res 15(1):1929–1958

 72. Tjong SF, Berry D M (2013) The design of SREE - A proto-
type potential ambiguity finder for requirements specifications
and lessons learned. In: J. Dörr, A.L. Opdahl (eds.) Requirements
Engineering: Foundation for Software Quality - 19th International
Working Conference, REFSQ 2013, Essen, Germany, April 8-11,
2013. Proceedings. Lecture Notes in Computer Science 7830:80–
95 (Springer)

 73. Turian JP, Ratinov L, Bengio Y (2010) Word representations:
A simple and general method for semi-supervised learning. In:
J. Hajic, S. Carberry, S. Clark (eds.) ACL 2010, Proceedings of

the 48th Annual Meeting of the Association for Computational
Linguistics, July 11-16, 2010, Uppsala, Sweden, pp. 384–394. The
Association for Computer Linguistics

 74. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser L, Polosukhin I (2017) Attention is all you need.
In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R,
Vishwanathan SVN, Garnett R (eds) Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4–9 December 2017. Long
Beach, CA, USA, pp 5998–6008

 75. Wang W, Niu N, Liu H, Niu Z (2018) Enhancing automated
requirements traceability by resolving polysemy. In: 26th IEEE
International Requirements Engineering Conference, RE 2018,
Banff, AB, Canada, August 20-24, 2018, pp. 40–51

 76. Wang Y, Shi L, Li M, Wang Q, Yang Y (2020) A deep context-
wise method for coreference detection in natural language require-
ments. In: 28th IEEE International Requirements Engineering
Conference, RE 2020, Zurich, Switzerland, August 31 - Septem-
ber 4, 2020, pp. 180–191. IEEE

 77. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A,
Cistac P, Rault T, Louf R, Funtowicz M, Davison J, Shleifer S,
von Platen P, Ma C, Jernite Y, Plu J, Xu C, Scao TL, Gugger S,
Drame M, Lhoest Q, Rush AM (2020) Transformers: State-of-
the-art natural language processing. In: proceedings of the 2020
conference on empirical methods in natural language processing:
system demonstrations, pp. 38–45. Association for Computational
Linguistics, Online

 78. Yang H, De Roeck A, Gervasi V, Willis A, Nuseibeh B (2011)
Analysing anaphoric ambiguity in natural language requirements.
Requir Eng 16(3):163–189

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Detecting coreferent entities in natural language requirements
	Abstract
	1 Introduction
	2 Background
	2.1 Fine-tuning BERT
	2.2 Word embeddings
	2.3 Preliminaries on coreference resolution

	3 Approach
	3.1 Context truncation
	3.2 Coreference classification
	3.2.1 Fine-tuning BERT context model
	3.2.2 Word2Vec-based entity network
	3.2.3 Representation fusion
	3.2.4 Training details and implementation

	3.3 Clustering and normalization
	3.3.1 Clustering
	3.3.2 Normalization

	4 Experiment design
	4.1 Research questions
	4.2 Data preparation
	4.2.1 Pre-processing
	4.2.2 Sampling
	4.2.3 Ground-truth labeling

	4.3 Baselines
	4.3.1 Baselines for coreference classification
	4.3.2 Baselines for clustering

	4.4 Experimental setup
	4.5 Evaluation metrics

	5 Results and analysis
	5.1 Answering RQ1: coreference classification
	5.2 Answering RQ2: clustering and normalization
	5.3 Answering RQ3: ablation experiment
	5.4 Answering RQ4: data sensitivity

	6 Discussion
	6.1 Parameter settings on baselines
	6.2 Applicability

	7 Threats to validity
	8 Related work
	8.1 Detection of inconsistency
	8.2 Coreference resolution

	9 Conclusion and future work
	Acknowledgements
	References

